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Fluctuations of elastic interfaces in fluids: Theory, lattice-Boltzmann model, and simulation
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We study the dynamics of elastic interfaces—membranes—immersed in thermally excited fluids. The work
contains three components: the development of a numerical method, a purely theoretical approach, and nu-
merical simulation. In developing a numerical method, we first discuss the dynamical coupling between the
interface and the surrounding fluids. An argument is then presented that generalizes the single-relaxation-time
lattice-Boltzmann method for the simulation of hydrodynamic interfaces to include the elastic properties of the
boundary. The implementation of this method is outlined and it is tested by simulating the static behavior of
spherical bubbles and the dynamics of bending waves. By means of the fluctuation-dissipation theorem we
recover analytically the equilibrium frequency power spectrum of thermally fluctuating membranes and the
correlation function of the excitations. Also, the nonequilibrium scaling properties of the membrane roughen-
ing are deduced, leading us to formulate a scaling law describing the interface growth,W2(L,t)
5L3 g(t/L5/2), whereW, L, and t are the width of the interface, the linear size of the system, and the time,
respectively, andg is a scaling function. Finally, the phenomenology of thermally fluctuating membranes is
simulated and the frequency power spectrum is recovered, confirming the decay of the correlation function of
the fluctuations. As a further numerical study of fluctuating elastic interfaces, the nonequilibrium regime is
reproduced by initializing the system as an interface immersed in thermally preexcited fluids.

PACS number~s!: 61.20.Ja
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I. INTRODUCTION

Elastic interfaces in fluids, such as biological membran
have spurred a strong interest in recent years not only
cause of their practical importance, but also because of
intriguing complexity of their phenomenology. Many aspe
of this rich subject have been studied from different a
proaches. Since temperature and its effects play a prim
role in natural phenomena, thermal fluctuations of flu
hexatic, nematic, and polymerized membranes have b
theoretically discussed in a number of works@1–6#. Also,
due to their relevance to mechanical and chemical inte
tions in biological systems, shape transformations and fl
tuating topologies of elastic interfaces immersed in flu
with, in many cases, shear flows have been thoroughly s
ied @7–12#. Crystalline membranes, also known as polym
ized or tethered membranes, are, in particular, a fascina
subject with important concrete realizations in nature, s
as the cytoskeleton of mammalian erythrocytes~red blood
cells! @13,14#. Among the systems that can be physica
realized in a laboratory, inorganic crystalline membran
were examined in@15,16#. On the other hand, theoretica
work on tethered membranes has proved successful in
dressing the crumpling transition@17–21#. Other theoretical
results on finite-size effects in fluid membranes can be fo
in @22–24#. Furthermore, some books and reports@25–29#
reviewing the statistical mechanics, thermodynamics,
geometrical structure of membranes have shed further l
on the understanding of the subject.

In the present work, we focus on the physics of elas
interfaces in fluids when thermal fluctuations in the bulk ge
erate correlated forces and subsequent excitations on
PRE 621063-651X/2000/62~5!/6667~14!/$15.00
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boundary. This dynamical coupling between interface a
surrounding fluid is believed to be responsible for interest
phenomena, such as the flickering of erythrocytes@2# or the
physical distribution of particulates inside certain lip
vescicles@30#. Because many such problems do not hav
closed-form solution, numerical simulations can provide
with a valuable tool for a deeper understanding and gen
guidelines for designing new experiments. More genera
the ability to simulate thermally fluctuating elastic mem
branes in fluids allows a computational model to be eff
tively employed in the simulation of the biophysical system
for which the effects of a finite temperature need to be
cluded. Computational works on fluctuating membranes h
appeared rarely in the literature@11,31–33#. As an interest-
ing example, in the work by Goetzet al. @31# the power
spectrum of a fluctuating bilayer membrane in vacuum
obtained by molecular dynamics. Also, the reader may fi
in @32# an example of how a mean-field theory approach
the framework of a lattice-Boltzmann model can be effe
tively employed in the study of phase separation with bou
aries driven by surface tension and bending stiffne
Broadly speaking, elastic forces are governed by the lo
curvature of the interface and their wavelengths are two
four orders of magnitude larger than molecular ones. The
fore, a major difficulty in modeling such systems is one
describing the problem at the different length and time sca
of molecular and elastic interactions in a unified and con
tent approach.

Our work is threefold. First, we create a numeric
method for the study of fluctuating membranes. Second,
use the method to simulate phenomena associated with
coupling of the interface and the surrounding fluids. Thi
6667 ©2000 The American Physical Society
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6668 PRE 62DAVIDE STELITANO AND DANIEL H. ROTHMAN
after reviewing the properties of fluctuating membranes
equilibrium, we deduce the nonequilibrium scaling law go
erning the interface roughening and show that our pre
tions are observed in simulations.

We develop a lattice-Boltzmann model. Not only does o
method allow the simulation of bending waves and fluctu
ing membranes in fluids, but it also allows the study of mo
complicated physical problems, in which the interface h
many distinct components and the fluids have prescribed
locity vector fields, inducing stresses on the boundary.
that our method may eventually be used to simulate comp
flows in complex geometries, it is designed to produce t
interfaces, with a thickness of the order of a few (;3) lattice
units. Accordingly, we choose not to describe the ela
boundaries by means of a slowly varying order parame
We choose instead to represent the dynamics of interfa
with bending rigidity by means of a free energy@1,11,34#, in
which the location and the geometrical properties—
curvature—of the membrane appear explicitly. Thermal fl
tuations are introduced in the model as a Gaussian nois
the lattice-Boltzmann equation@35,36#. The link between
differential geometry and microscopic dynamics is provid
by a suitable perturbation, driven by the local curvature,
the occupation numbers, similarly to a procedure alre
successful in the study of interfaces with surface tens
@37#.

This paper is organized as follows. In Sec. II we pres
an overview of the relevant interface and fluid dynami
Section III focuses on the fluid-interface coupling and
how the macroscopic equations of motion for the membr
are translated into microscopic mechanical prescriptions
the occupation numbers. We thus provide the theoretical
sis for building a lattice-Boltzmann computational mod
Section IV reports the results of the simulation of spheri
bubbles and bending waves. Also, the experimental dis
sion relation is here compared to the theoretical predict
In the following section we then discuss the theoretical
scription of the physics of one-dimensional fluctuating me
branes coupled to thermally excited fluids. In Sec. VI we u
our model to simulate fluctuating elastic interfaces and st
both the nonequilibrium roughening and the stationary st
We present here the results of our computations and com
them with the theory previously outlined. Conclusions fo
low in Sec. VII.

II. DYNAMICAL COUPLING OF ELASTIC INTERFACES
TO AN EXTERNAL FORCE

In this section we provide a theoretical motivation for t
lattice-Boltzmann microscopic dynamics that constitutes
basis of our model. We recall the common expression of
free energy for elastic interfaces and apply Hamilton’s va
tional principle to recover the macroscopic equation of m
tion.

The dynamics of membranes with bending or flexural
gidity e and surface tensions is assumed to be governed, fo
the case of a vanishing spontaneous curvature, by the
energy@1,11,34#

F5
1

2
eE dSH21 ēE dSK1sE dS, ~2.1!
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where the integrations are performed over the area of a t
dimensional~2D! membrane or over the length of a 1D in
terface.H is the sum of the principal curvatures andK is
their product ~the Gaussian curvature!. ē is named the
saddle-splay modulus and the second term in the above e
tion is responsible for the energy gain/loss due to a chang
the interface genus, according to the Gauss-Bonnet theo
*dSK52px54p(12g), where x is the Euler-Poincare´
characteristic of the surface andg is its genus@38#. For the
1D interfaces studied here, this term acts as a spontan
curvature. Since we set it to vanish, the saddle-splay t
will be neglected. The dynamical coupling of the membra
with its surroundings is realized by introducing the forceF
per unit area or unit length exerted by the fluids on the
terface. By applying Hamilton’s variational principle to th
free energy~2.1! and including a term for the work done b
F when the membrane undergoes a configurational cha
@1,39,40#, the following relation betweenF' , the component
of the force perpendicular to the interface, and the geome
properties is derived in Appendix A:

F'5sH1eH( g i
22e¹2H. ~2.2!

Here the g i ’s are the principal curvatures of th
(n21)-dimensional hypersurface. This expression spec
izes to the case of a 1D membrane as

F'5sg1eg32e
d2g

ds2
. ~2.3!

In Eq. ~2.3! s is the arclength of a canonical parametrizati
of the interface andg(s) is the local curvature.

III. NUMERICAL METHOD

The lattice-Boltzmann method@37,41# that we adopt
solves the incompressible Navier-Stokes equations for
fluid dynamics, namely,

r~] tu1u•“u!5m¹2u2“p,

~3.1!

“•u50.

Hereu is the fluid macroscopic velocity,p the local pressure
r the density, andm the viscosity coefficient. We show in
this section howu, p, andr are expressed in terms of m
croscopic quantities and how the coupling between the fl
dynamics~3.1! and the interface dynamics~2.3! is realized
by means of the microscopic pressure tensor.

In making the connection between the macroscopic re
tion ~2.3! and the microscopic dynamics of our lattic
Boltzmann method, we shall follow a procedure that h
been previously employed for interfaces with surface tens
@37,42#. Notice first thatF' corresponds to the local fluid
pressure gapDp5p12p2 across the interface, so that on
can rewrite Eq.~2.3! as

Dp~s!5sg~s!1eg3~s!2eg̈~s!, ~3.2!
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where an overdot denotes the derivative with respect to
arclength. The mechanical relation@37,43# between the nor-
mal pressure and the longitudinal pressurept reads

Dp~s!5g~s!E
2`

`

@ p̄n~s!2pt~s,y!#dy, ~3.3!

where the integration is carried out along they direction
perpendicular to the interface. The average between the p
sures at either side of the membrane isp̄n[(p11p2)/2
5p21Dp/2. In practiceDp!( p̄n2pt), p̄n . We therefore
simply replacep̄n(s) with pn(s)'p1(s)'p2(s) and recast
Eq. ~3.2! as

gE
2`

`

@pn2pt#dy5sg1eg32eg̈. ~3.4!

In the lattice-Boltzmann method@37,41#, the momentum
flux tensorP is expressed in terms of the discretized veloc
distribution functionsni(x,t),

P~x,t !5(
i

ni~x,t !cici , ~3.5!

whereni(x,t) represents the positive real-valued occupat
number at a given sitex and timet with velocity ci . Similar
expressions hold for the fluid density and velocity,

r5(
i

ni~x,t !, ~3.6!

ru5(
i

ni~x,t !ci . ~3.7!

In the present work, interfaces separate the two compone
called ‘‘red’’ and ‘‘blue,’’ of a binary fluid. The sum of the
red occupation numbersr i and the blue onesbi at each lat-
tice site is preserved:

ni~x,t !5r i~x,t !1bi~x,t !. ~3.8!

Starting from this distinction in terms of color attributes, it
possible to build a numerical method and study miscible
immiscible fluids, and, after suitable generalizations,
physics of even more complex fluids can be discus
@37,44#.

The different components ofP are related to the macro
scopic pressure tensor. Let us assume, for example, tha
interface is oriented parallel to thex axis in a neighborhood
of a given point (xp,0). ThenPyy and Pxx replacepn and
pt , respectively, in Eq.~3.4!, resulting in

g (
k52`

`

(
i

ni~xp ,k,t !~ciy
2 2cix

2 !5sg1eg32eg̈,

~3.9!

wherek is the discrete coordinate running along they axis.
The microscopic dynamics governing the time evoluti

of the distribution functions is described by the Boltzma
equation. Lattice-Boltzmann models rely on a discretiz
form of it, namely@37,41,45#,
e

es-

n

ts,

d
e
d

the

d

ni~x1ci ,t11!5ni~x,t !1D i@n~x,t !#, ~3.10!

where the last term is the collision operator, which accou
for the change in the occupation numbers due to collision
the lattice sites. For practical reasons,D i@n(x,t)# is usually
replaced by its linear expansion around the equilibriu
populationsni

eq(x,t) @46#

D i@n~x,t !#5(
j

L i j @nj~x,t !2nj
eq~x,t !#, ~3.11!

whereLi j is a matrix of constant coefficients. A further sim
plification consists in substitutingLi j with a diagonal opera-
tor lBd i j , wherelB is the relevant eigenvalue of the linea
ized Boltzmann operator, so that Eq.~3.10! simplifies in the
single-relaxation-time lattice-Boltzmann model@47,48# to

ni~x1ci ,t11!5~11lB!ni~x,t !2lBni
eq~x,t !.

~3.12!

This expression conserves mass and momentum. Also,
populationsni , in the absence of external forcing, conver
to the equilibrium occupation numbersni

eq.
Thermal fluctuations are introduced in the model by ad

ing a stochastic termD i8(x,t) to the right-hand side of Eq
~3.12! such that@35#

D i8~x,t !}(
a,b

sab8 ~x,t ! ~ciacib2c2dab /D !. ~3.13!

Here D is the dimensionality of the lattice and the rando
fluctuationssab8 are uncorrelated in space and time@49# and
sampled from a Gaussian distribution such that

^sab8 ~x,t !shz8 ~x8,t8!&5A dxx8d tt8S dahdbz1dazdbh

2
2

3
dabdhzD , ~3.14!

where the varianceA is related to the effective temperatureT
of the fluid,

A52rnkBTlB
2 , ~3.15!

by means of the fluctuation-dissipation theorem@35#.
In order to reproduce the desired surface tension

bending stiffness of the interface, so that the left-hand sid
Eq. ~3.9! does not vanish in the proximity of the boundar
one may suitably perturb the single-relaxation-time lattic
Boltzmann model by adding a termD i9 to the right-hand side.
Our perturbation of Eq.~3.12! reads

D i9[~S1Eg22Eg̈/g!ufu(
ab

~ciacib2c2dab /D !
f a f b

f 2
,

~3.16!

whereS andE are two adjustable parameters correspond
to the physical surface tensions and bending rigiditye, and
f(x,t) is the local color gradient@37# as defined in Appendix
B. In order to measure the geometric properties of
membrane—the curvatureg and its derivatives—appearin
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6670 PRE 62DAVIDE STELITANO AND DANIEL H. ROTHMAN
in Eq. ~3.16!, we adopt an explicit procedure of localizatio
of the different connected components of the interface. T
method is described in some detail in Appendix B. There
show how, for each component, we map the boundary pie
wise to polynomials, from which we extract the curvatu
and its derivatives. This process does not result in a sig
cant time consumption for the whole simulation, as it is p
formed only once at the beginning of each time step and
limited to the lattice sites that constitute the interface.

Expression~3.16! preserves the total mass and moment
at a given lattice site, as one can verify by recalling t
identities

(
i

cia50,

(
i

ciacib5bmc2dab /D,

(
i

ciacibcig50,

which hold true for tensors with hypercubic symmetry. B
generalizing the argument set forth in Sec. 10.2 of@37#, it
can be shown that the inclusion of Eq.~3.16! into the right-
hand side of Eq.~3.12! generates a surface tensions and a
bending rigiditye of the interface, which are related toSand
E, respectively, through the linear relation

s

S
5

e

E
52

192r

lB
~3.17!

valid for the face-centered hypercubic~FCHC! lattice, which
we shall employ throughout this work. The above result f
lows from replacing Eqs.~10.14! and~10.3! in @37# with our
equations~3.9! and the result of the perturbation of E
~3.12! by Eq. ~3.16! and carrying out an analysis similar t
that in @37#.

IV. TESTING THE MODEL

The surface tension parameterS is set to zero so tha
purely elastic effects can be studied. In Sec. IV A, the res
for a spherical bubble surrounded by fluids on both sides
presented. In Sec. IV B, the bending wave dispersion rela
is discussed by studying the damped oscillations of si
soidal interfaces.

A. Spherical bubbles

The lattice-Boltzmann simulation is initialized as
spherical bubble of a fluid, here called ‘‘red’’ for practic
purposes, immersed in a bath of ‘‘blue’’ fluid with linea
dimensionL much larger than the radiusR of the sphere. The
pressure gapDp between the red inner part of the bubble a
the outside blue sea is predicted by replacing Eq.~3.17! in
Eq. ~3.2!, resulting in

Dp52
192rE

lB
g352

192rE

lBR3
~4.1!
e
e
e-

fi-
-
is

e

-

ts
re
n
-

ass is set to vanish in our experiments,g51/R, and g̈50
for a sphere. The pressure is computed by measuring
fluid density according to the equation of state~in the ab-
sence of a net momentum! @37#

p~r!5
bmr

2b
, ~4.2!

wherebm is the number of velocity vectors~24 for a FCHC
lattice!, while b[bm1br includes the numberbr of rest par-
ticles ~in this casebr516). Simulations were performed fo
different bubble sizes, ranging fromR58 to R564, with
average density of 0.5 particles per lattice site,lB521, and
E51023. The measured values ofDp are plotted versus
R23 in Fig. 1. The agreement with the predicted relati
Dp50.096R23, drawn as a solid line, is very good. Fo
bubble radii smaller than eight lattice units, discretizati
effects cause the measured curvature to be off more
15%, and ultimately wrong when the radius of curvature is
the order of the interface thickness, which is about four l
tice units.

B. Bending waves

While bubble pressure gaps verify the equilibrium pro
erties of the membrane, the simulation of bending wa
provides an effective tool for testing the dynamics of t
fluid-interface coupling. In testing the bending wave disp
sion relation, we initialize the system as a square reg
filled with two immiscible fluids with the same densities an
viscosities. Such fluids are separated by a sinusoidal in
face, whose wavelengthl is equal to the linear dimension o
the box. We impose periodicity along the horizontal ax
while free-slip boundary conditions are prescribed along
vertical axis. The damped oscillations of bending waves
membranes immersed in viscous fluids have been ana
cally studied in the literature@50#. For the initial conditions
we impose one expects the time dependence of the first
mal mode to be described by

hk1
~ t !5hk1

0 cos@Re~v!t# e2Im(v)t, ~4.3!

FIG. 1. Verification of theDp5e/R3 law for a fluid bubble
immersed in an immiscible sea. The solid line is the theoret
prediction for the parameters specified in the text. The pressure
Dp is determined from the equation of statep(r)53r/10, wherer
is the fluid density. The radiusR of the bubble is expressed in lattic
units.
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wherek152p/L, with L the size of the box, andhk1

0 is the

initial amplitude of the sinusoidal wave. The complex ang
lar frequencyv is related to the wave numberk[2p/l
through the dispersion relation@2#

v25
ek5

2r
~12k/q!,

~4.4!

q5Ak22 iv/n,

wheren5m/r is the kinematic shear viscosity. The nume
cal simulation of a bending wave for a system defined
E50.25, L5100, r50.5, lB521.0, hk1

0 /L50.05 is given

as an example in Fig. 2. By means of Eqs.~3.17! and ~4.4!
and the relation between the viscosityn and the Boltzmann
eigenvaluelB @37#,

n52
1

3 S 1

lB
1

1

2D . ~4.5!

Therefore one may fully predict the behavior of the norm
mode~4.3!. hk1

(t) was computed as the Fourier transform

the experimental interface profileh(x,t), recorded at each
time step. Figure 2 shows the evolution ofhk1

(t) according
to Eq. ~4.3! ~solid line! and our numerical results~circles!.
By fitting the first cycle of the time evolution ofhk1

(t) to a

curve of the form~4.3! (hk1

0 is initially prescribed! we col-

lected the numerical data about the complex angular
quencyv, whose real and imaginary parts correspond to
oscillation frequency and damping rate, respectively, of
bending wave. We repeated the simulation of Fig. 2 for d
ferent wavelengths, collecting the data about the damp
rates Im(v) and the oscillation frequencies Re(v). In Fig. 3
we produce the experimental results together with the
merical solution of Eq.~4.4!. We notice that the agreemen
between experimental data and theoretical predictions
proves for larger systems and the relative errors reduc
few percent for wavelengths ofO(102) lattice units. The

FIG. 2. The results of the lattice-Boltzmann simulation of
bending wave with wavelengthl5100 lattice units~circles!. The
theoretical predictions from the normal-mode analysis, Eqs.~4.3!
and~4.4!, are graphed as a solid line.hk1

(t) is the Fourier transform
in lattice units of the interface profile, corresponding to the wa
numberk152p/l.
-

y

l
f

-
e
e
-
g

-

-
to

relative error is here defined in terms of the theoretical a
experimental time evolution of the damped wave as

«~l!5A1

t (
t50

t

@12hk1 ,ex~ t !/hk1 ,th~ t !#2, ~4.6!

wheret is twice the oscillation period of the bending wav
Table I reports the relative errors for different wavelengt
confirming their fast convergence towardO(1022) when l
.70. The error at small wavelengths is due to a numer
artifact that manifests itself as an effective surface tens
We postpone further discussion of this subject to Sec. VI

TABLE I. Relative errors«(l) for the sinusoidal bending
waves discussed in Sec. IV B and in Fig. 3.

l «(l)

50 0.2741
60 0.1915
70 0.1262
80 0.0833
90 0.0640
100 0.0519
110 0.0428
120 0.0371
130 0.0323
140 0.0289

e

FIG. 3. ~a! Oscillation frequencies collected from the simulatio
of bending waves with wavelengths ranging from 50 to 140 latt
units are represented with filled circles. The numerical solution
Eq. ~4.4! is drawn as a solid line.~b! Damping rates for the sam
experiment correspond to the imaginary part of the complex
quency Im(v). The discrepancy at shorter wavelenghts is due to
damping action of the effective surface tension discussed in S
VI B.
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V. THERMAL FLUCTUATIONS OF ELASTIC
INTERFACES: THEORY

We now turn to a study of fluctuating membranes. T
section introduces the theoretical results relevant to our
cussion. A comparison with numerical experiments will th
be presented in succeeding sections. The fluctuat
dissipation theorem provides us with a unified description
the steady state and the nonequilibrium growth~roughening!
of fluctuating interfaces. Emphasis is given to the freque
power spectrum, as it conveys all the relevant informat
about the decay of the correlation function of the fluctu
tions.

A. Correlation functions from the fluctuation-dissipation
theorem

A detailed discussion of the fluctuation-dissipation the
rem and fluctuating hydrodynamic interfaces driven by s
face tension has been presented in@51,52#. Here we summa-
rize the theoretical results for 1D interfaces with bend
stiffness.

The interface height will be denoted byh(x,t) and its
Fourier transform in wave number space byhk(t). We also
introduce the Fourier transform in time as

ĥk~v!5
1

QE
0

Q

dt hk~ t ! e2 ivt, ~5.1!

whereQ is the size of the time integration domain. Whe
Q→` the integral in Eq. ~5.1! will be replaced by
(1/Q)*0

Q→(1/2p)* .
It can be shown@52,53# that the frequency power spec

trum can be written in terms of the response functionGk(v)
as

uĥk~v!u25
Q

2p2

kBT

v2L
Re@Gk~v!#, ~5.2!

where

Gk
21~v!5

2vr

ik~12k/q!
2

ek4

iv
~5.3!

and q is given in Eq.~4.4!. The frequency power spectrum
carries information about the fluctuation correlation fun
tions. Indeed, by means of the Wiener-Khintchine relati
Eq. ~5.2! can be used to show that

^hk~ t !hk* ~0!&5
kBT

2pLE2`

` dv

v2
e2 ivutu Gk~v!. ~5.4!

The integration in Eq.~5.4! can be performed in the comple
v plane by means of the contour drawn in Fig. 4, so tha

^hk~ t !hk* ~0!&5^hk~ t !hk* ~0!&bw1^hk~ t !hk* ~0!&cut
~5.5!

is the sum of the contributions from the two poles~bending
wave! and from the branch cut. In the case of oscillati
bending waves the contribution from the two poles results
s
s-

n-
f

y
n
-

-
-

-
,

n

^hk~ t !hk* ~0!&bw

5
kBT

ek4L
FcosuRe~v!tu2UIm~v!

Re~v!
UsinuRe~v!tuG e2uIm(v)tu,

~5.6!

wherev as a function ofk is given by the dispersion relatio
~4.4!. Also, in the long time limit, the contribution from the
branch cut reads

^hk~ t !hk* ~0!&cut5
2kBTrn1/2

e2k8L

e2k2nutu

utu3/2
. ~5.7!

One can show by means of the fluctuation-dissipation th
rem @52# that the correlations among the fluctuating forc
acting on the interface, and due to the uncorrelated ther
excitations in the bulk, have indeed the same temporal de
as Eq.~5.7!. A special case is the one oft50 in Eq. ~5.4!.
The integration contour can then be closed in the upper
plane, including only the pole atv50. As a result

^uhk~0!u2&5
kBT

ek4L
~5.8!

represents the mean square amplitude of thekth mode@2#,
which can also be understood by applying the energy e
partition theorem to the free energy~2.1!.

B. Interface roughening

The mean square widthW2(L,t) of an interface with van-
ishing mean height, defined as

W2~L,t ![
1

LE0

L

dx h2~x,t !, ~5.9!

will be used here to describe the interface roughening.
using Parseval’s relation, Eq.~5.9! can be recast as
W2(L,t)5(kuhk(t)u2. At the steady state, the average wid
can be evaluated by means of Eq.~5.8!,

FIG. 4. Integration contour for the fluctuation correlation fun
tion ~5.4!. The poles in the lower half plane corresponds to t
bending wave contribution, while the pole at the origin represe
the steady state power spectrum.
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W2~L !5
2kBT

eL (
n51

` S L

2pnD 4

5
kBT

720e
L3, ~5.10!

where the factor 2 accounts for the two possible orientati
~for a one-dimensional interface! of the wave vectors. This
result shows that at equilibriumW/L}L1/2, that is, the rela-
tive width apparently increases indefinitely with the squ
root of the linear size of the computational box.

In reality, the argument given above and culminating w
Eqs.~5.8! and~5.10! implicitly approximates the free energ
F5 1

2 e*dsg2 with the more convenient expressionFap
5 1

2 e*dx(d2h/dx2)2. Such an approximation is certainl
plausible wheng'd2h/dx2, that is, when the interface
width/length ratio is small. In practice, however, whe
W/L.1/2 the local curvature is significantly different from
its linearizationd2h/dx2, and the original expression~2.1!
for the free energy should be considered. Therefore E
~5.8! and ~5.10! hold true only for small values ofW/L,
while whenW/L.1/2 nonlinear terms in the curvature an
consequently in the dynamics prevent the interface wid
length ratio from growing indefinitely with the size of th
system. On the other hand, the lattice-Boltzmann method
are currently describing does not suffer from such a lim
tion. Indeed, the interface dynamics discussed in Sec
originates in our model from the perturbation~3.16!, which
corresponds to the exact analytical form of the elastic fo
Fel52e d2g/ds2 and not to its linearized approximatio
Fel'2e d4h/dx4, deducible fromFap. This allows us to
study and simulate the dynamics of membranes in the n
linear regime.

In order to analyze the nonequilibrium roughening of t
interface, two immiscible fluids at the same temperaturT
are brought in contact at timet50. The interface between
them is initially flat. Due to the thermal fluctuations in th
bulk, standing bending waves will be excited on the interfa
with frequencies given by the dispersion relation

v0~k!5A e

2r
k5/2, ~5.11!

where for simplicity we consider the inviscid limit (n50) of
Eq. ~4.4!. In analogy with the argument of@51,52# and by
means of the fluctuation-dissipation theorem, one anticip
that the power spectrum is given by

^uhk~ t !u2&5
2kBT

eLk4
sin2@v0~k!t#, ~5.12!

so that the mean square width of the interface is expecte
grow as

W2~L,t !5
4kBT

eL (
n

S L

2pnD 4

sin2FA e

2rS 2pn

L D 5/2

tG ,
~5.13!

where the thermal average ofW2 is understood. The inviscid
form of W2(L,t) as given by Eq.~5.13! does not hold for
long times, since it does not relax to the equilibrium~5.10! as
it should if the effects of a finite viscosity were taken in
account. Nonetheless, the initial excitations are all in pha
s

e

s.

/

e
-
II

e

n-

e

es

to

e,

as the interface starts with a flat profile, so Eq.~5.13! is a
correct description of the short-time nonequilibrium grow
of the interface width.

From Eqs.~5.10! and ~5.13! one finds thatW2 scales ac-
cording to

W2~L,t !5L3 g~ t/L5/2!, ~5.14!

where for large times

lim
t→`

g~ t/L5/2!5
kBT

720e
, ~5.15!

while the short-time limit is given by

g~ t/L5/2!5
kBT

4 ep4 (n

1

n4
sin2FA e

2rS 2pn

L D 5/2

tG .
~5.16!

One can obtain an analytical form for the above express
by approximating the summation with an integration, so t
Eq. ~5.13! becomes

W2~ t !5
4kBT

5p~2r!3/5e2/5
t6/5E

0

`

dx
sin2~x!

x11/5
, ~5.17!

where we setx5v0(k)t. The integral evaluates to@54#

E
0

`

dx
sin2~x!

x11/5
5

52 21/5

6
cos~2p/5! G~4/5!51.7219 . . .

~5.18!

and the roughening of the interface thus scales accordin

W2~ t !5
23/55 cos~2p/5! G~4/5!

3p

kBT

r3/5e2/5
t6/5. ~5.19!

We expect Eq.~5.19! to describe the growth of the interfac
until the crossover time at which equilibrium is attained. T
crossover timetc may be approximated by the time nece
sary for the longest-wavelength excitation to reach its ma
mum amplitude, that is,tc5T/4. If the dispersion relation
~4.4! is used to estimate the periodT, we conclude that

tc5
p

2 v0
5

1

8
ArL5

p3e
. ~5.20!

We shall compare the lattice-Boltzmann numerical simu
tions with the theoretical results of this section in the follo
ing.

VI. THERMAL FLUCTUATIONS OF ELASTIC
INTERFACES: SIMULATIONS

In this section we present the results of the simulatio
performed using the lattice-Boltzmann method with a nin
velocity square lattice~that is, a FCHC lattice projected in
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two-dimensions! @37,41#. The computational box of sizeL
3L is filled with two immiscible fluids prethermalized to
common temperature and separated by a thin interface.
two fluids have the same densities and viscosities. We s
the dynamical effects of thermal fluctuations at equilibriu
and out of equilibrium, when the interface grows up to t
steady state given by Eq.~5.10!. The interfaces we conside
are driven by the coupling with the surrounding fluids and
purely elastic forces, tuned by the bending moduluse, as
defined in Sec. II.
ct
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tiff
by
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th
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r

h

he
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A. Steady state

The evolution of an interface of sizeL564 was moni-
tored for 220 time steps, setting the experimental paramet
to lB521.5, r50.5, E50.0002 and the varianceA
51024. The resulting log-log plot of the frequency powe
spectrum is given in Fig. 5.

In order to compare the simulation data with the theo
we rewrite Eq.~5.2! in an explicit form. Letj5v/nk2, v0

5k2Aek/2r, j05v0 /nk2. Then Eq.~5.2! can be recast as
uĥk~v!u25
2rknkBTQ

p2L~ek4!2
Nj0

~j!, ~6.1!

where

Nj0
~j!5

1

2A2

j AA11j221

11~j2/j0
221!2A11j21A2~j2/j0

221!AA11j211

. ~6.2!
ace

er-

ec-

of

The

tude.
This function ofj is expanded aroundj50, leading to

Nj0
~j!512S 4

j0
4

2
3

j0
2

2
1

16D j21O~j4!, ~6.3!

which can be used to show thatNj0
(j) is strictly decreasing

for j0<j0c , with j0c52A2(A1023)'1.1394. Whenj0
.j0c , a maximum appears atjm , with limj0→j0c

jm50 and

limj0→`jm5j0. Also, we infer from Eqs.~6.2! and ~6.3!

that, whenj0!1, Nj0
(j) can be approximated by a distin

power law, according to the value ofj @the O(j4) terms do
not add any contribution#. That is, Nj0

'1 when j!j0
2,

Nj0
'j0

4j22/4 whenj0
2!j!1, andNj0

'j0
4j27/2/2A2 when

j@1. In this case, two transition regions can be further
tected aroundj'j0

2 andj'1.
In our simulations,j0.0.638 (j0

2.0.407). Therefore we
distinguish three regions in the frequency power spectru

~1! A plateau corresponding to the low-frequency limit
Eq. ~5.2! (Nj0

'1),

lim
v→0

uĥk~v!u2Y Q5
2rkn

p2

kBT

~ek4!2L
, ~6.4!

which explicitly shows a dependence on the bending s
nesse @55#. Low-frequency excitations are thus controlled
elastic forces and viscous effects. In Fig. 5 this region sp
a frequency interval of about two orders of magnitude for
highest wave number, up to wherev approaches the pole o
the response functionG.

~2! A transition region. Notice that the maximum appea
in this region only whenj0.j0c'1.1394, which is not the
case here. The maximum would, however, appear at hig
-

.

-

s
e

s

er

wave numbers, according to the expressionj05Aek/2rn2,
showing thatj0 is an increasing function ofk. This behavior
is opposite to that observed for interfaces driven by surf
tension, wherej05As/2rn2k andj0 is thus decreasing with
k @51,52#.

~3!The high-frequency region, expected from Eq.~5.2! to
represent av27/2 decay (Nj0

'j0
4j27/2/2A2), independent of

either the bending rigidity or the surface tension of the int
face, according to

lim
v→`

uĥk~v!u2/Q5
A2n k2 kBT

8p2L r
v27/2. ~6.5!

The relative amplitude of this segment of the power sp
trum is thus determined by viscosity effects alone.

FIG. 5. Frequency power spectrum for a fluctuating interface
sizeL564, whose time evolution was monitored for 220 time steps.
Experimental data for wave numbersk52p/L,4p/L and 6p/L are
reported as filled circles, squares, and diamonds, respectively.
solid lines represent the theoretical predictions from Eq.~5.2!,
showing that the agreement spans about three orders of magni
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The experimental results reproduced in Fig. 5 agree w
the theoretical predictions, here drawn as solid lines, ov
range of about three orders of magnitude, including par
the high-frequency region. The discrepancy with the the
at the highest frequencies is of unknown origin. It may
related to the low signal-to-noise ratio at the highest frequ
cies, or possibly some other artifact of the discrete Fou
transform.

Since the theoretical prediction~5.2! is confirmed by our
numerical results at all but the highest frequencies, the s
sequent conclusions, Eqs.~5.8! and ~5.10!, describe the av-
erage wave number power spectrum and the functional
pendence of the interface width on the linear dimension
the box. In particular, from Eq.~5.10! we estimate that
W/L'1/16 for the case just discussed.

B. Effective surface tension

More simulations were performed to verify the agreem
with the theoretically predictable wave number power sp
trum. Different temperatures, lattice sizes, and bending
gidities were prescribed for the system. In Fig. 6 we repo
study of equilibrium power spectra for a lattice of sizeL
560 and bending moduluse ranging from 0.0032 to 0.512
With this set of parameters the ratioW/L spans an interva
from 1/6 to 1/60. We notice a very good agreement with E
~5.8! when W/L.1/20, but for smaller ratios the relatio
describing the steady state power spectrum is approxim
by

^uhku2&5
kBT

~seffk
21ek4!L

, ~6.6!

showing the presence of an effective surface tensionseff . By
considering the small-k limit of Eq. ~6.6! when W/L
,1/20, we measuredseff for different points in the three
dimensionale-L-T space. The following empirical scalin
law resulted from our simulations:

seff5
1

L2
D@~W/L !2#5

1

L2
D~TL/e!, ~6.7!

whereD is a scaling function. Figure 7 shows a log-log pl

FIG. 6. Power spectra of fluctuating membranes of sizeL560
lattice units and different bending stiffnesses. The interface wid
length ratioW/L ranges from 1/60 to 1/15. WhenW/L.1/20 the
purely elastic functional dependence of the power spectrum~with
slope of24 in a log-log plot! is recovered.
h
a
f
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-
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of the measured values ofseff versus (W/L)2. Approxi-
mately,seff decays as a power law for increasing values
W/L, namely,D(TL/e)}(TL/e)22; also, whenW/L.1/20
it essentially vanishes and purely elastic dynamics ta
place.

In order to discuss the origin of Eq.~6.7!, we investigate
here the scaling properties of the ratiog̈/g, the crucial factor
in the perturbation~3.16! of the Boltzmann equation. For
boundary of the formh(x), the derivative with respect to th
arclengths can be expressed in terms ofx as

d

ds
5

1

A11h8~x!2

d

dx
, ~6.8!

where the prime stands ford/dx. From the expression for the
curvature,

g~x!5
h9~x!

~11h82!3/2
, ~6.9!

one obtains

g̈

g
5

h(4)

h9~11h82!

210
h8h-

~11h82!2
23

~125h82!h92

~11h82!3
.

~6.10!

In the case of sinusoidal bending waves and fluctuating
terfaces with horizontal periodicity as a boundary conditio
the profileh(x) satisfies@56#

h(n)~x!5
W

Ln
Sn~2px/L !, ~6.11!

whereh(n)(x) is thenth derivative ofh(x) andSn is periodic
in x with periodL. By replacing Eq.~6.11! in Eq. ~6.10!, we
find the following scaling relation for the dynamical facto

g̈

g
5

1

L2
Gth@~W/L !2,x/L#, ~6.12!

whereGth is the theoretical scaling function.

/
FIG. 7. Effective surface tension obtained from the power sp

tra of the simulations of fluctuating membranes. Computatio
boxes withL540 and 60 and different temperatures and bend
rigidities were considered. We show a log-log plot of the data
seff versuskBTL/e5W2/L2.
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After initializing the system with different sinusoida
waves, we measured the ratiog̈/g for L564 and 256 lattice
units and amplitudes ranging from 1/64 to 1/8 of the wa
lengths. In Fig. 8 we report the results of such measurem
as a function ofx. From the figure the experimental behavi
of g̈/g presents the scaling

S g̈

g
D

ex

5
1

L2
$Gex@~W/L !2,x/L#1D@~W/L !2#%, ~6.13!

where Gex approachesGth for large computational boxe
~high resolution!:

lim
L→`

Gex@~W/L !2,x/L#5Gth@~W/L !2,x/L#. ~6.14!

The most notable feature in Eq.~6.13! is the presence of the
additional constant termD@(W/L)2#/L2. It is responsible for
the introduction in our model of an effective surface tensi
as it causesS in Eq. ~3.16! to be a nonvanishing number.

FIG. 8. Measured values of the ratiog̈/g are plotted as filled
circles for static sinusoidal interfaces with wavelengthsL of 64 and
256 lattice units and widthsW ranging from 1/64 to 1/8 of the
wavelengths. Solid lines represent the analytical results for the
tinuum limit obtained from Eq.~6.10!. WhenW/L,1/32, the mea-
sured values appear to be shifted with respect to the theore
ones. This introduces an effective surface tension for almost
surfaces that scales as a functionD of W and L: seff

5D@(W/L)2#/L2.
-
ts

,

C. Nonequilibrium roughening

As shown in Sec. V B, at large times the average interf
width reaches its equilibrium value given by Eq.~5.10!. Be-
fore reaching the stationary state, though, the interf
growth is described by the power law~5.19!. In this section
we present the results of the simulation of nonequilibriu
growing interfaces and compare them with the theoret
predictions.

After initializing the system as a flat boundary separat
two immiscible prethermalized fluids, we monitored th
growth of the interface for a period of time approximate
equal to twice the crossover timetc estimated in Eq.~5.20!.
We repeated the simulation 100 times and averaged the
sults, in order to obtain the mean quantities that appea
Eqs.~5.10! and~5.19!. Such an experiment is reported in Fi
9, where the solid line represents the expected behavio
the interface growth, taking into account the presence of
effective surface tension. From the figure, the early-time e
lution of the interface growth appears to be described by
scaling lawW}t1/3 @52#. Again, we conclude that the mem
brane is indeed driven byseff for very small interface width/
length ratios, that is, for almost flat boundaries. In order
bypass the effect of the surface tension and analyze
purely elastic nonequilibrium dynamics, the membrane p
file is initialized in such a way thatW/L.1/20. Under these
conditions, the disturbance due toseff is negligible ~as
shown in Sec. VI A!. The Fourier components of the inte
face profile are prescribed as

hk~ t0!5A2kBT

eLk4
sin@v0~k!t0#,

wheret05tc/4 is the time at which the numerical simulatio
starts; furthermore, the relative intensities ofhk(t0) have
been chosen so that they agree with the evolution~5.12!. We
studied the nonequilibrium roughening of such interfaces
an interval of time starting attc/4 and terminating at approxi
mately 3tc , after the equilibrium width is attained. In Fig
10~a! we report the interface widths for system sizesL
532, 48, 64, and 96, rescaled asW/L3/2 so as to match the
prefactor AkBT/720e from the anticipated steady sta

n-

al
at

FIG. 9. Log-log plot of the time evolution~circles! of the mean
width of an interface with sizeL564, starting from flatness at time
t50, and monitored for an interval of time equal to about twice t
crossover time~5.20!. The solid line represents the theoretical sc
ing law W}t1/3 predicted for the effective surface tensionseff . The
sudden change in slope aroundt'103 corresponds to the onset o
purely elastic dynamics.
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~5.10!, drawn in the figure as a solid line. The horizon
coordinate in Fig. 10~a! represents the timet in lattice units,
rescaled ast/L5/2 so that all the crossover times fall a
Ar/64p3 e, according to Eq.~5.20!. In order to evaluate the
prefactors above, we used the relations~3.15!, ~3.17!, and
~4.5!, where the parameters for this experiment were se
lB521.5, E50.0002,r50.5 and the varianceA to 1024.
A log-log plot of the same data is shown in Fig. 10~b!. Also,
the predicted scaling law~5.19! is represented as a solid lin
with angular coefficient 3/5. We notice a good agreem
between the numerical results and the theoretical predicti
although we were able to investigate the nonequilibrium
havior in a time range of just about one-half the order
magnitude.

VII. CONCLUSIONS

Fluctuating elastic interfaces in fluids have been discus
from different approaches. By means of the fluctuatio
dissipation theorem, we presented a theoretical derivatio
nonequilibrium interface roughening, described by the sc
ing law W25L3 g(t/L5/2). This expression predicts that th
interface, initially flat, grows asW}t3/5, and at long times it
reaches the equilibrium widthW5AkBT/720e L3/2. Also,
we showed that the correlation function of the fluctuatio

FIG. 10. In ~a! we plot the rescaled interface widthW/L3/2 in
lattice units, as a function of the time, scaled tot/L5/2 so as to make
all the crossover times match the prefactorAr/64p3 e predicted
from Eq.~5.20!. The computational box sizes areL532,48,64, and
96. The horizontal line represents the steady state width as in
~5.10!. In ~b! a log-log plot of the same data is given. The dash
line marks the scaled crossover time, while the oblique line rep
sents the theoretical prediction from Eq.~5.19!, with an angular
coefficient of 3/5. The symbols represent different values of
system size: squares, diamonds, filled circles, and six-pointed
correspond toL532,48,64, and 96 respectively.
l

to

t
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-
f
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-
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s

decays exponentially in the long-time limit, in agreeme
with the behavior of the correlated forces on the interfa
due to the excitations in the bulk@52#.

Although the theoretical discussion was necessary for
sake of clarity, this work instead focused on the developm
of a numerical method simulating the phenomenology
fluctuating membranes. We created a lattice-Boltzma
method. Starting from the description of the membrane
namics by means of the Landau-Helfrich free energy@1,34#,
in which the interface geometry appears explicitly in t
form of the curvatureg and its derivatives, we translated th
macroscopic equation of motion governing the interface e
lution into a perturbation of the single-relaxation-tim
lattice-Boltzmann equation. Such a perturbation depends
g, so that a crucial point of our model is the localization
the interface and the measurement of its geometric pro
ties. As outlined in Appendix B, we adopted an explicit cha
acterization of the boundary followed by a polynomial ma
ping, from which we extracted the information about t
local curvature.

We tested our method to reproduce the hydrodyna
equilibrium of circular bubbles and the dynamical coupli
of the interface with the surrounding fluids in the bendi
wave dispersion relation. Thermal fluctuations were int
duced in the model by adding a random component to
fluid stress tensor@49#. The lattice-Boltzmann equation wa
thus generalized to include a stochastic term@35#, whose
fluctuations are uncorrelated in space and time. The equ
rium frequency power spectrum of fluctuating elastic int
faces, predicted by the theory and related to the correla
function of the excitations, was confirmed in our numeric
simulations. Also, we simulated the nonequilibrium roughe
ing of membranes, monitoring the time evolution of the i
terface width. Its growth rate was in agreement with the t
oretical predictions mentioned above, although we notice
disturbance due to numerical errors at almost flat surfa
generating an unwanted effective surface tension. In orde
improve the effectiveness of the interface detection proc
other, more accurate, techniques for tracking the interf
could be considered. For example, using markers in the c
text of an explicit discretization of the interface@57,58#
could further improve the performance of this numeric
method.

One of the advantages of our numerical method relies
the fact thatg and d2g/ds2, the second derivative in the
arclengths, are not approximated by their linearized expre
sions d2h/dx2 and d4h/dx4 respectively@here h(x) is the
boundary profile#. We could thus use our model to study an
simulate systems in the nonlinear regime, that is, when
interface is far from being flat and the curvature is a nonl
ear function of the interface profile. Another feature of th
method is that it has been designed from the outset to
scribe thin interfaces separating two~or more! fluids, a situ-
ation that is difficult to describe in terms of a slowly varyin
continuous field~order parameter!. In future work, we would
like to employ this model in the study of fluctuating mem
branes separated into many distinct components, collid
with each other and immersed in fluids with prescribed
complex fields. Also interesting would be the inclusion of
surfactant species, as in the microemulsion model of R
@44#.
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APPENDIX A: FLUID-INTERFACE COUPLING

In the following we review the dynamical coupling be
tween the membrane and the surrounding fluid, generaliz
the results ton-dimensional interfaces. The 2D case with
saddle-splay term in the free energy~2.1! is also presented
We shall denote byr[(x1 , . . . ,xn11) the locus of the
n-dimensional hypersurface embedded in t
(n11)-dimensional space. The hypersurface is parametr
by then coordinatesu1 , . . . ,un , collectively referred to asu,
so thatr[r(u). n(u) represents the unit normal to the su
face oriented outward andei[]r/]ui is the tangent vecto
corresponding to the coordinateui . We shall assumes tha
the hypersurface is well behaved and we are able to choo
parametrizationu such that

^ei ,ej&5ei•ej5d i j . ~A1!

The Weingarten operator, defined asL(ei)[]n/]ui , is self-
adjoint with respect to Eq.~A1!, and theei ’s are chosen to be
eigenvectors ofL

L~ei ![
]n

]ui
5g iei , ~A2!

whereg i is the principal curvature corresponding toei . In
other words, our parametrizationu runs along the principa
directions of curvature. We shall apply Hamilton’s princip
@59# to the line integral of the Lagrangian describing t
interface dynamics,

Iid5E E S r

2
ṙ22

e

2
H22s DdSdt, ~A3!

wherer is the density of the hypersurface,e is the bending
rigidity, H5( ig i is the mean curvature ands is the surface
tension. dS5du1 . . . dun is the volume element for the
given parametrization. By means of Eqs.~A1! and~A2! one
can verify that

]2r

]ui
2

5
]ei

]ui
52g in, ~A4!

so that Eq.~A3! is recast as

Iid5E E Fr

2
ṙ22

e

2
~¹u

2r!22s)
i

u]ui
ruGdSdt ~A5!

where

ṙ5
dr

dt
, ¹u

2r5(
i

]2r

]ui
2

, u]ui
ru51.
er
e

n
-

g

ed

e a

A variation of Eq.~A3! reads

dIid5E E S r ṙ•
d

dt
dr2e¹u

2r•¹u
2dr

2s(
j

]r

]ui
•

]

]ui
drD dSdt. ~A6!

Upon integration by parts, the boundary terms vanish as
study closed surfaces or impose periodic boundary co
tions and all of the derivatives involved are supposed to
smooth functions of the coordinatesu. Therefore, by apply-
ing Hamilton’s principle, including a term for an extern
force Fext ,

dI5E E @2r r̈2e~¹u
2!2r1s¹u

2r#•drdSdt

1E Fext•drdt50, ~A7!

one retrieves the following equation of motion:

Fext52s¹u
2r1e~¹u

2!2r1r r̈. ~A8!

If Fext is the pressure, it is directed along the normal to
surface, that is,Fext5Fn. By noticing that Eqs.~A4! and
~A2! lead to

~¹u
2!2r5~¹u

2!~2Hn!

52S ¹u
2H2H(

i
g i

2Dn1(
i

S 2g i

]H

]ui
1H

]g i

]ui
Dei

~A9!

and by projectingr̈ along the normal and tangential comp
nents, Eq.~A8! can be separated as

F2r r̈•n5sH2e¹2H1eH(
i

g i
2 , ~A10!

r r̈•ei /e52g i]H/]ui1H ]g i /]ui , i 51, . . .n,
~A11!

where we have dropped the subscriptu in the Laplacian as it
is invariant for any isometric reparametrization. The ma
result of this Appendix is that the dynamical coupling b
tween the interface and the fluid in the lattice-Boltzma
method is provided by Eq.~A10!. Since the macroscopic
motion of the membrane is extremely slow in terms of latt
units, ofO(103) time steps, the second term in the left-ha
side of Eq.~A10! can be neglected for our purposes and
shall regard

F5sH2e¹2H1eH(
i

g i
2 ~A12!

as a quasistationary equilibrium between the interface c
figuration and the surrounding fluid pressure. Similarly it c
be shown that the dynamical coupling for a 2D interfac
including as in Eq.~2.1! a saddle-splay correction to Eq
~A3!, is given by
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F5sH2e¹2H1eH~H222K !

1 ē~HK2]2g1 /]u2
22]2g2 /]u1

2!, ~A13!

whereK5g1g2 is the Gaussian curvature. Equation~A13!
should be used in simulating 2D membranes with this latti
Boltzmann method, when changes in the interface genus
taken into account.

APPENDIX B: EVALUATION OF THE CURVATURE

In this appendix we include a description of the algorith
used in this work to measure the geometric properties of
interface. The procedure is schematically divided into th
steps: localization of the interface, polynomial approxim
tion, and evaluation of the local curvature.

As mentioned in Sec. III, the populations correspond
to two immiscible fluids are distinguished from each other
splitting the occupation numbersni(x,t) at a given lattice
site into a ‘‘red’’ part r i(x,t) and a ‘‘blue’’ part bi(x,t) of
the distribution function, as in Eq.~3.8!. By defining the
color field as

F~x,t !5(
i

@r i~x,t !2bi~x,t !#, ~B1!

one can visualize the binary fluid as a 2D surface where
lowest regions correspond to the physical presence of
blue fluid and the flat ‘‘highlands’’ to the areas occupied
the red fluid. The interface, in this picture, is represented
the steep slopes. One can define the boundaryB between the
two fluids as the set of lattice sites whose color field abso
value is smaller than a fractiona (,1) of the fluid density
r, that is,

B[$x:uF~x,t !u,ar%. ~B2!

In our simulations, due to the small thickness of the int
face,a might be chosen to be a value between 0.5 and
with no substantial changes inB. Another parameter used i
the description of the interface is the color gradientf, defined
as

f~x,t !5(
i

ci (
j

@r j~x1ci ,t !2bj~x1ci ,t !#. ~B3!

From its definitionf appears to be, in the lattice approxim
tion, perpendicular to the interface. The vectorn[f/ufu will
be used here as the unit normal to the interface.

After localizing the interface, in order to measure its ge
metrical properties at a certain lattice sitex0 in B, we replace
a neighborhood ofx0 with the polynomial resulting from a
-
re

e
e
-

g
y

ts
e

y

te

-
.9

-

least-squares fit, as described below. The neighborhood
given boundary point~in the present casex0) is constituted
by contiguous lattice sites inB and is chosen so that th
following two conditions are met:~1! The normals at the
points furthest fromx0 make an angle of at mostp/4 with
the normal atx0; ~2! All the boundary points in the neigh
borhood lie within a distance of 30 lattice units fromx0
~about 10 times the interface width! or half the linear size of
the computational box, whichever is smaller.

In Fig. 11 we present the two-step process. The fil
circles represent the lattice sites belonging to the boundar
a neighborhood of the pointx0 ~marked by a cross!; arrows
are magnified representations of the normals at the co
sponding lattice sites. As shown in Fig. 11~b!, calculations
are simplified by rotating the whole set of points clockwi
by the angleq5arccos(n• i), where i is a unit vector di-
rected along the positivex-axis. In this way, we can fit the
subset of B by a single-valued polynomial inx: y
5( i 50

N aix
i / i !, wherex50 corresponds to the horizontal co

ordinate of x0. It is convenient to chooseN>4, because
derivatives up to the fourth order are involved in the eva
ation of g̈, the second derivative in the arclength of the cu
vature. In practice, we letN55, as the accuracy of ou
method does not improve for larger values ofN.

Once the coefficientsai are estimated, we calculateg and
g̈/g by replacing h(x) in Eqs. ~6.9! and ~6.10! with y
5(aix

i / i ! and settingx to vanish. In other words,an sub-
stitutes forh(n) in Eqs. ~6.9! and ~6.10!. Also, it is evident
from these equations thatg̈/g is an ill-defined function when
g50 or, equivalently,h950. We set the termg̈/g to vanish
in such cases. The dynamical termg2(x,t)2g̈(x,t)/g(x,t),
appearing in the perturbation~3.16! is thus evaluated by re
peating the above procedure for each lattice sitex in B.

FIG. 11. Filled circles represent an interface neighborhood o
given lattice sitex0 on the boundary~marked by a cross!. An arrow
indicates the direction of the normaln to the interface at the corre
sponding lattice site. The whole set of points in~a! is rotated clock-

wise by the angleq5arccos(n• x̂) so as to alignn with the y-axis
~b!. A least-squares fit of the interface can thus be realized by
single-valued polynomialy5( i 50

5 aix
i / i !, here drawn as a dashe

line.
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