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Fluctuations of elastic interfaces in fluids: Theory, lattice-Boltzmann model, and simulation
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We study the dynamics of elastic interfaces—membranes—immersed in thermally excited fluids. The work
contains three components: the development of a numerical method, a purely theoretical approach, and nu-
merical simulation. In developing a numerical method, we first discuss the dynamical coupling between the
interface and the surrounding fluids. An argument is then presented that generalizes the single-relaxation-time
lattice-Boltzmann method for the simulation of hydrodynamic interfaces to include the elastic properties of the
boundary. The implementation of this method is outlined and it is tested by simulating the static behavior of
spherical bubbles and the dynamics of bending waves. By means of the fluctuation-dissipation theorem we
recover analytically the equilibrium frequency power spectrum of thermally fluctuating membranes and the
correlation function of the excitations. Also, the nonequilibrium scaling properties of the membrane roughen-
ing are deduced, leading us to formulate a scaling law describing the interface gravth,,t)
=L3g(t/L>?), whereW, L, andt are the width of the interface, the linear size of the system, and the time,
respectively, and is a scaling function. Finally, the phenomenology of thermally fluctuating membranes is
simulated and the frequency power spectrum is recovered, confirming the decay of the correlation function of
the fluctuations. As a further numerical study of fluctuating elastic interfaces, the nonequilibrium regime is
reproduced by initializing the system as an interface immersed in thermally preexcited fluids.

PACS numbd(s): 61.20.Ja

[. INTRODUCTION boundary. This dynamical coupling between interface and
surrounding fluid is believed to be responsible for interesting
Elastic interfaces in fluids, such as biological membranesphenomena, such as the flickering of erythrocy®sor the
have spurred a strong interest in recent years not only bgshysical distribution of particulates inside certain lipid
cause of their practical importance, but also because of theescicles/30]. Because many such problems do not have a
intriguing complexity of their phenomenology. Many aspectsclosed-form solution, numerical simulations can provide us
of this rich subject have been studied from different ap-with a valuable tool for a deeper understanding and general
proaches. Since temperature and its effects play a primamyuidelines for designing new experiments. More generally,
role in natural phenomena, thermal fluctuations of fluid,the ability to simulate thermally fluctuating elastic mem-
hexatic, nematic, and polymerized membranes have bedrranes in fluids allows a computational model to be effec-
theoretically discussed in a number of workis-6]. Also, tively employed in the simulation of the biophysical systems
due to their relevance to mechanical and chemical interador which the effects of a finite temperature need to be in-
tions in biological systems, shape transformations and fluceluded. Computational works on fluctuating membranes have
tuating topologies of elastic interfaces immersed in fluidsappeared rarely in the literatuf&1,31-33. As an interest-
with, in many cases, shear flows have been thoroughly studag example, in the work by Goetet al. [31] the power
ied[7—12]. Crystalline membranes, also known as polymer-spectrum of a fluctuating bilayer membrane in vacuum is
ized or tethered membranes, are, in particular, a fascinatingbtained by molecular dynamics. Also, the reader may find
subject with important concrete realizations in nature, suchn [32] an example of how a mean-field theory approach in
as the cytoskeleton of mammalian erythrocytesd blood the framework of a lattice-Boltzmann model can be effec-
cells) [13,14. Among the systems that can be physically tively employed in the study of phase separation with bound-
realized in a laboratory, inorganic crystalline membranesaries driven by surface tension and bending stiffness.
were examined if15,16. On the other hand, theoretical Broadly speaking, elastic forces are governed by the local
work on tethered membranes has proved successful in adurvature of the interface and their wavelengths are two to
dressing the crumpling transitidd7—21]. Other theoretical four orders of magnitude larger than molecular ones. There-
results on finite-size effects in fluid membranes can be foundore, a major difficulty in modeling such systems is one of
in [22—24. Furthermore, some books and repdi2§—-29  describing the problem at the different length and time scales
reviewing the statistical mechanics, thermodynamics, andf molecular and elastic interactions in a unified and consis-
geometrical structure of membranes have shed further lightnt approach.
on the understanding of the subject. Our work is threefold. First, we create a numerical
In the present work, we focus on the physics of elasticnethod for the study of fluctuating membranes. Second, we
interfaces in fluids when thermal fluctuations in the bulk gen-use the method to simulate phenomena associated with the
erate correlated forces and subsequent excitations on tlwupling of the interface and the surrounding fluids. Third,
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after reviewing the properties of fluctuating membranes atvhere the integrations are performed over the area of a two-
equilibrium, we deduce the nonequilibrium scaling law gov-dimensional(2D) membrane or over the length of a 1D in-
erning the interface roughening and show that our predicterface.H is the sum of the principal curvatures aKdis

tions are observed in simulations. their product (the Gaussian curvaturee is named the

We develop a lattice-Boltzmann model. Not only does oursaddle-splay modulus and the second term in the above equa-
method allow the simulation of bending waves and ﬂUCtuat'tion is responsib|e for the energy gain/k)ss dueto a Change in
ing membranes in fluids, but it also allows the study of morethe interface genus, according to the Gauss-Bonnet theorem
complicated physical problems, in which the interface hasfqSk=2x7y=4m(1—g), where y is the Euler-Poincare
many distinct components and the fluids have prescribed Ve:haracteristic of the surface ands its genug38]. For the
locity vector fields, inducing stresses on the boundary. SQp interfaces studied here, this term acts as a spontaneous
that our method may eventually be used to simulate compleygyrvature. Since we set it to vanish, the saddle-splay term
flows in complex geometries, it is designed to produce thinyjl| be neglected. The dynamical coupling of the membrane
interfaces, with a thickness of the order of a few3) lattice  ith its surroundings is realized by introducing the fofee
units. Accordingly, we choose not to describe the elastiger unit area or unit length exerted by the fluids on the in-
boundaries by means of a slowly varying order parameteferface. By applying Hamilton's variational principle to the
We choose instead to represent the dynamics of interfac@fee energy(2.1) and including a term for the work done by
with bending rigidity by means of a free enerid11,34,in F \hen the membrane undergoes a configurational change
which the location and the geometrical properties—the{l,ggAq, the following relation betweef, , the component

curvature—of the membrane appear explicitly. Thermal fluc-of the force perpendicular to the interface, and the geometric
tuations are introduced in the model as a Gaussian noise {yoperties is derived in Appendix A:

the lattice-Boltzmann equatiof85,36. The link between

differential geometry and microscopic dynamics is provided

by a suitable perturbation, driven by the local curvature, of Fo=cH+eHY, y?—€V?H. (2.2

the occupation numbers, similarly to a procedure already

successful in the study of interfaces with surface tensior]_|ere the y's are the principal curvatures of the

[37). . . . (n—1)-dimensional hypersurface. This expression special-
This paper is organized as_follows. In Sec. _II we present,qs o the case of a 1D membrane as

an overview of the relevant interface and fluid dynamics.

Section IIl focuses on the fluid-interface coupling and on 42

how the macroscopic equations of motion for the membrane Fo=oy+ey’— e— 7’ (2.3

are translated into microscopic mechanical prescriptions for &

the occupation numbers. We thus provide the theoretical ba-

sis for building a lattice-Boltzmann computational model.In Eq. (2.3) sis the arclength of a canonical parametrization

Section IV reports the results of the simulation of sphericalof the interface and/(s) is the local curvature.

bubbles and bending waves. Also, the experimental disper-

sion relation_is here_compared to _the theoretical pre_diction. IIl. NUMERICAL METHOD

In the following section we then discuss the theoretical de-

scription of the physics of one-dimensional fluctuating mem- The lattice-Boltzmann method37,41] that we adopt

branes coupled to thermally excited fluids. In Sec. VI we usesolves the incompressible Navier-Stokes equations for the

our model to simulate fluctuating elastic interfaces and stud§iuid dynamics, namely,

both the nonequilibrium roughening and the stationary state.

We present here the results of our computations and compare p(du+u-Vu)=puV?u—Vp,
them with the theory previously outlined. Conclusions fol- (3.
low in Sec. VII.

V.-u=0.

II. DYNAMICAL COUPLING OF ELASTIC INTERFACES . . ) )
TO AN EXTERNAL FORCE Hereu is the fluid macroscopic velocity the local pressure,

p the density, angx the viscosity coefficient. We show in
In this section we provide a theoretical motivation for thethis section howu, p, andp are expressed in terms of mi-
lattice-Boltzmann microscopic dynamics that constitutes th@roscopic guantities and how the coupling between the fluid
basis of our model. We recall the common expression of the@lynamics(3.1) and the interface dynamid®.3) is realized
free energy for elastic interfaces and apply Hamilton’s variahy means of the microscopic pressure tensor.
tional principle to recover the macroscopic equation of mo-  |n making the connection between the macroscopic rela-
tion. tion (2.3) and the microscopic dynamics of our lattice-
The dynamics of membranes with bending or flexural ri-Boltzmann method, we shall follow a procedure that has
gidity € and surface tensiom is assumed to be governed, for been previously employed for interfaces with surface tension
the case of a vanishing spontaneous curvature, by the frgg87 42. Notice first thatF, corresponds to the local fluid
energy[1,11,34 pressure gap\p=p;—p, across the interface, so that one
can rewrite Eq(2.3) as

1 _
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where an overdot denotes the derivative with respect to the ni(x+¢,t+1)=n;(x,t)+A[n(xt)], (3.10
arclength. The mechanical relatipd7,43 between the nor-
mal pressure and the longitudinal presspyeeads where the last term is the collision operator, which accounts

for the change in the occupation numbers due to collisions at
the lattice sites. For practical reasods|n(x,t)] is usually
replaced by its linear expansion around the equilibrium
populationsn{x,t) [46]

Ap(s)=(s) J:[Fn(S)—pt(s,y)]dy, (33

where the integration is carried out along thedirection
perpendicular to the interface. The average between the pres-

sures at either side of the membrangﬁcn,z(pﬁ p»)/2
=p,+Ap/2. In_practiceAp<(pn—pt)<pn. We therefore
simply replacep,(s) with p,(s)=~pi(s)~p,(s) and recast

Ai[n(x,t)]=; Li[n(xH—n®x,0],  (3.1D

whereL; is a matrix of constant coefficients. A further sim-
plification consists in substituting;; with a diagonal opera-

Eq.(3.2 as tor Agdjj , Wherehg is the relevant eigenvalue of the linear-
x ized Boltzmann operator, so that E§.10 simplifies in the
yf [pn—pldy=oy+ey®—ey. (3.4  single-relaxation-time lattice-Boltzmann modédl7,4§ to
_ ni(X+¢ ,t+1)=(1+Ag)ni(x,t) = AgnTYx,t).
In the lattice-Boltzmann methoB7,41], the momentum (3.12
flux tensorll is expressed in terms of the discretized velocity
distribution functions;(x,t), This expression conserves mass and momentum. Also, the

populationsn; , in the absence of external forcing, converge
_ . - to the equilibrium occupation numbeng®.
(x.0 Z nix.Hec, @9 Thermal fluctuations are introduced in the model by add-
ing a stochastic term\/ (x,t) to the right-hand side of Eq.
wheren;(x,t) represents the positive real-valued occupation3.12) such thaf35]
number at a given site and timet with velocity ¢;. Similar

expressions hold for the fluid density and velocity, , ,
Ai(x,t)ocazﬁ ol5(X%1) (CioCig—C?8,p/D). (3.13

= n; th ’ 3-6 . . . . .

P 2.: (%) 39 Here D is the dimensionality of the lattice and the random
ﬂUCtU&tiOﬂSO’;B are uncorrelated in space and tif@] and
sampled from a Gaussian distribution such that

pu=2i n;(x,t)c; . (3.7 P

. "X T (X U)Y=A Sy Sypr| 84,05+ 8,60
In the present work, interfaces separate the two components, (ap(x D (X)) xx “( an®pL " Talhn

called “red” and “blue,” of a binary fluid. The sum of the

r_ed o_ccu_pation numbers and the blue oneb; at each lat- —E5a35 {>, (3.14
tice site is preserved: 3 K
n;(X,t) =r;(x,t) +bi(x,t). (3.8  where the varianca is related to the effective temperature
of the fluid,
Starting from this distinction in terms of color attributes, it is
possible to build a numerical method and study miscible and A= 2pkaT7\ZB, (3.1

immiscible fluids, and, after suitable generalizations, the

physics of even more complex fluids can be discusse®y means of the fluctuation-dissipation theorg8b].
[37,44). In order to reproduce the desired surface tension and

The different Components dil are related to the macro- bending stiffness of the interface, so that the left-hand side of
scopic pressure tensor. Let us assume, for example, that tifl- (3.9 does not vanish in the proximity of the boundary,
interface is oriented parallel to theaxis in a neighborhood ONn€ may suitably perturb the single-relaxation-time lattice-
of a given point &,,0). Thenll,, andIl,, replacep, and Boltzmann model by adding a terf{' to the right-hand side.

p;, respectively, in Eq(3.4), resulting in Our perturbation of Eq(3.12 reads
- . . - . , - , fofg
yka Z ni(xp,k,t)(ciy—cix)=ay+ €y — €Yy, A=(S+Ey _E7/7)|f|%; (CiqCig—C 5a3/D)f—2,
(3.9 (3.16

wherek is the discrete coordinate running along thaxis. whereS andE are two adjustable parameters corresponding
The microscopic dynamics governing the time evolutionto the physical surface tensienand bending rigiditye, and

of the distribution functions is described by the Boltzmannf(x,t) is the local color gradieri37] as defined in Appendix

equation. Lattice-Boltzmann models rely on a discretized. In order to measure the geometric properties of the

form of it, namely[37,41,45, membrane—the curvaturg and its derivatives—appearing
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in Eq. (3.16, we adopt an explicit procedure of localization N
of the different connected components of the interface. The
method is described in some detail in Appendix B. There we Ap 3
show how, for each component, we map the boundary piece-
wise to polynomials, from which we extract the curvature

and its derivatives. This process does not result in a signifi- 1
cant time consumption for the whole simulation, as it is per-
formed only once at the beginning of each time step and it is
limited to the lattice sites that constitute the interface. 0

Expression(3.16) preserves the total mass and momentum

=x10

05 1 15 2 25

-3 -4
at a given lattice site, as one can verify by recalling the R x10
identities FIG. 1. Verification of theAp=e/R® law for a fluid bubble
immersed in an immiscible sea. The solid line is the theoretical
2 e -0 prediction for the parameters specified in the text. The pressure gap
la 1
I

Ap is determined from the equation of stgtép) = 3p/10, wherep
is the fluid density. The radiuR of the bubble is expressed in lattice
units.

> CiaCip=bnC?8,4/D,
' aso is set to vanish in our experimentg=1/R, and y=0
for a sphere. The pressure is computed by measuring the
> Ci4CigCi,=0, fluid density according to the equation of stdte the ab-
i sence of a net momentyrfd7]

which hold true for tensors with hypercubic symmetry. By

generalizing the argument set forth in Sec. 10.73#], it Pmp

can be shown that the inclusion of E®.16 into the right- P(p)= 5 (4.2
hand side of Eq(3.12 generates a surface tensienand a

bending rigiditye of the interface, which are related $and

E, respectively, through the linear relation whereb,, is the number of velocity vector®4 for a FCHC
lattice), while b=b,,,+ b, includes the numbds, of rest par-

o € 192p ticles (in this caseb,=16). Simulations were performed for
STET (3.17  different bubble sizes, ranging froR=8 to R=64, with

average density of 0.5 particles per lattice sitg= —1, and
—10-3
valid for the face-centered hypercul§leCHC) lattice, which Ej319 . The measured values dfp are plotted versus
we shall employ throughout this work. The above result fol-R ™~ In F'g-_la- The agreement with the predicted relation
lows from replacing Eqs(10.14 and(10.3 in [37] with our ~AP=0.09&R"*, drawn as a solid line, is very good. For

equations(3.9) and the result of the perturbation of Eq. bubble radii smaller than eight lattice units, discretization
(3.12 by Eq.(3.16 and carrying out an analysis similar to effects cause the measured curvature to be off more than

that in[37]. 15%, and ultimately wrong when the radius of curvature is of
the order of the interface thickness, which is about four lat-
tice units.

IV. TESTING THE MODEL

The surface tension paramet8ris set to zero so that
purely elastic effects can be studied. In Sec. IV A, the results
for a spherical bubble surrounded by fluids on both sides are While bubble pressure gaps verify the equilibrium prop-
presented. In Sec. IV B, the bending wave dispersion relatiogrties of the membrane, the simulation of bending waves
is discussed by studying the damped oscillations of sinuprovides an effective tool for testing the dynamics of the
soidal interfaces. fluid-interface coupling. In testing the bending wave disper-

sion relation, we initialize the system as a square region
A. Spherical bubbles fi!led vyiph two immisgible fluids with the same Qensi'Fies qnd
) ) ) S viscosities. Such fluids are separated by a sinusoidal inter-

The lattice-Boltzmann simulation is initialized as a face, whose wavelengthis equal to the linear dimension of
spherical bubble of a fluid, here called “red” for practical the box. We impose periodicity along the horizontal axis,
purposes, immersed in a bath of “blue” fluid with linear \yhijle free-slip boundary conditions are prescribed along the
dimensionL much larger than the radilisof the sphere. The  yertical axis. The damped oscillations of bending waves for
pressure gaj p between the red inner part of the bubble andmembranes immersed in viscous fluids have been analyti-
the outside blue sea is predicted by replacing @dl7) in  cally studied in the literaturf50]. For the initial conditions
Eq. (3.2), resulting in we impose one expects the time dependence of the first nor-

mal mode to be described by

B. Bending waves

192pE 192pE
Ap=- T E (4.9 hy, (1) =h{ co§ Re(w)t] M “.3
" )\BR3 K ky w , .




PRE 62

400[ %
hg (1) )
200

-200

500 1000 1500 2000 2500
Time t in lattice units

FIG. 2. The results of the lattice-Boltzmann simulation of a
bending wave with wavelength=100 lattice units(circles. The
theoretical predictions from the normal-mode analysis, E4S)
and(4.4), are graphed as a solid Iiriekl(t) is the Fourier transform

in lattice units of the interface profile, corresponding to the wave

numberk,;=2m/\.

wherek; =2m/L, with L the size of the box, anty is the

initial amplitude of the sinusoidal wave. The complex angu-

lar frequencyw is related to the wave numbde=2x/\
through the dispersion relatid2]

22 1w
o —Z( —k/q),

4.9

q=Vk°—iwlv,

wherev= u/p is the kinematic shear viscosity. The numeri-

cal simulation of a bending wave for a system defined by

E=0.25,L=100, p=0.5, A\g=—1.0, h81/L=0.05 is given
as an example in Fig. 2. By means of E(3.17) and (4.4)

and the relation between the viscosityand the Boltzmann
eigenvaluexg [37],

1

E .

1( 1
p=——
Therefore one may fully predict the behavior of the normal

3 )\—B + 4.5

FLUCTUATIONS OF ELASTIC INTERFACESN . ..

6671

-3

x 10

Re (w)

50 70 90 110 130 150

50 70 90 110 130 150

A

FIG. 3. (a) Oscillation frequencies collected from the simulation
of bending waves with wavelengths ranging from 50 to 140 lattice
units are represented with filled circles. The numerical solution of
Eq. (4.4 is drawn as a solid linglb) Damping rates for the same
experiment correspond to the imaginary part of the complex fre-
qguency Img). The discrepancy at shorter wavelenghts is due to the
damping action of the effective surface tension discussed in Sec.
VI B.

relative error is here defined in terms of the theoretical and
experimental time evolution of the damped wave as

1 T
e(\)= \/; t:EO [1=h, exD/N (DT (4.6

where is twice the oscillation period of the bending wave.
Table | reports the relative errors for different wavelengths,

confirming their fast convergence towa@{10~?) when\
>70. The error at small wavelengths is due to a numerical
artifact that manifests itself as an effective surface tension.

mode(4.3). hy, (t) was computed as the Fourier transform of \ye nostpone further discussion of this subject to Sec. VI B.

the experimental interface profile(x,t), recorded at each
time step. Figure 2 shows the evolution h3<f1(t) according

to Eq. (4.3 (solid line) and our numerical result&ircles.

TABLE |I. Relative errorse(\) for the sinusoidal bending

waves discussed in Sec. IV B and in Fig. 3.

By fitting the first cycle of the time evolution dfkl(t) to a
curve of the form(4.3 (hE1 is initially prescribed we col-

lected the numerical data about the complex angular fre

guencyw, whose real and imaginary parts correspond to the
oscillation frequency and damping rate, respectively, of the

bending wave. We repeated the simulation of Fig. 2 for dif-

ferent wavelengths, collecting the data about the damping

rates Im@) and the oscillation frequencies Re&Y. In Fig. 3

we produce the experimental results together with the nu-
merical solution of Eq(4.4). We notice that the agreement
between experimental data and theoretical predictions im-
proves for larger systems and the relative errors reduce to

N e(N\)

- 50 0.2741
60 0.1915
70 0.1262
80 0.0833
90 0.0640
100 0.0519
110 0.0428
120 0.0371
130 0.0323
140 0.0289

few percent for wavelengths db(10?) lattice units. The
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V. THERMAL FLUCTUATIONS OF ELASTIC It
INTERFACES: THEORY Rw)
e
We now turn to a study of fluctuating membranes. This > Cm) °

section introduces the theoretical results relevant to our dis-
cussion. A comparison with numerical experiments will then

be presented in succeeding sections. The fluctuation-
dissipation theorem provides us with a unified description of
the steady state and the nonequilibrium growtiughening

of fluctuating interfaces. Emphasis is given to the frequency ) ) _
power spectrum, as it conveys all the relevant information FIG. 4. Integration contour for the fluctuation correlation func-

about the decay of the correlation function of the fluctua-ion (5-4. The poles in the lower half plane corresponds to the
tions ending wave contribution, while the pole at the origin represents

the steady state power spectrum.

A. Correlation functions from the fluctuation-dissipation
theorem (hi(H) i (0))bw

A detailed discussion of the fluctuation-dissipation theo- KeT Im()
rem and fluctuating hydrodynamic interfaces driven by sur- = CosiRe(w)tl—’— sinRe( w)t| g lim(e)t]
face tension has been presentef5h,52. Here we summa- ek’L Re(w)
rize the theoretical results for 1D interfaces with bending (5.6)

stiffness.
The interface height will be denoted by(x,t) and its
Fourier transform in wave number space lipyt). We also  wherew as a function ok is given by the dispersion relation
introduce the Fourier transform in time as (4.4). Also, in the long time limit, the contribution from the
branch cut reads

. 10 .
hk(w)=6fo dt he(t) e 't (5.1

b (B (O _2kBTle/2 e—kzvm .
< k() k( )>cut_ |t|3/2 : ( 7)

where O is the size of the time integration domain. When
®—o the integral in Eg.(5.) will be replaced by
(10)[§—(1/2m).

It can be showr{52,53 that the frequency power spec- One can show by means of the fluctuation-dissipation theo-

trum can be written in terms of the response funcmnw) rem [52] that the correlations among the quctuating forces
as acting on the interface, and due to the uncorrelated thermal

excitations in the bulk, have indeed the same temporal decay
A ksT as Eq.(5.7). A special case is the one 60 in Eq. (5.4).
h(w)]?=— — R T'(w)], (5.2 The integration contour can then be closed in the upper half
2 2
27" oL plane, including only the pole at=0. As a result

k8L

where

k
20p k! (|h(0)|) = |<B4 (5.9

-1 _ o
Fk (w)—m o (53) €

L
andq is given in Eq.(4.4). The frequency power spectrum represents the mean square amplitude ofktemode[2],

carries information about the fluctuation correlation func-\ynich can also be understood by applying the energy equi-
tions. Indeed, by means of the Wiener-Khintchine relatio”’partition theorem to the free energg.1).

Eq. (5.2 can be used to show that

kegT [~ dow B. Interface roughening

ho(th(0))=—| —e "l (w). 4
(DR (0)) 27L )~ 2 © de). 64 The mean square widW?(L,t) of an interface with van-

ishing mean height, defined as
The integration in Eq(5.4) can be performed in the complex
g 1L
o plane by means of the contour drawn in Fig. 4, so that W2(L t)E_f dx P2(x,t) (5.9
1 L O 1 1 .

(hi(D)hi (0))=(hi() g (0)Yow+ (i) (0)yeue
5

will be used here to describe the interface roughening. By
is the sum of the contributions from the two polé&ending using Parseval’'s relation, Eq(5.9 can be recast as
wave and from the branch cut. In the case of oscillatingW?(L,t)=3,|h.(t)|?. At the steady state, the average width
bending waves the contribution from the two poles results ircan be evaluated by means of E§.9),
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e L \4 KkaT as the interface starts with a flat profile, so E§.13 is a
2 B KB 3 L. . P
W4(L)= L (2 ) =750 L=, (5.10  correct description of the short-time nonequilibrium growth
€k n=127n € of the interface width.

From Egs.(5.10 and(5.13 one finds thatW? scales ac-

where the factor 2 accounts for the two possible Orientationéording to

(for a one-dimensional interfag®f the wave vectors. This
result shows that at equilibrium/L< L2 that is, the rela-
tive width apparently increases indefinitely with the square
root of the linear size of the computational box.

In reality, the argument given above and culminating with
Egs.(5.8) and(5.10 implicitly approximates the free energy

W2(L,t)=L3g(t/L5?), (5.14

where for large times

F=3€[dsy* with the more convenient expressiafi,, lim g(t/L5?) = kBT, (5.15
=1 efdx(d?h/dx?)2. Such an approximation is certainly too 720¢

plausible wheny~d?h/dx?, that is, when the interface

width/length ratio is small. In practice, however, when while the short-time limit is given by

W/L>1/2 the local curvature is significantly different from

its linearizationd?h/dx?, and the original expressiof2.1) o KeT 1 € [2mn) 52

for the free energy should be considered. Therefore Egs. g(t/L>)= 42 —43|n2 o\ t|.

(5.8 and (5.10 hold true only for small values of\V/L, 4em” n n P

while whenW/L>1/2 nonlinear terms in the curvature and (5.16

consequently in the dynamics prevent the interface width/o btai Wtical f for the ab .
length ratio from growing indefinitely with the size of the Ne can obtamn an analytical form lor theé above expression
system. On the other hand, the lattice-Boltzmann method w y approximating the summation with an integration, so that
are currently describing does not suffer from such a limita- g.(5.13 becomes

tion. Indeed, the interface dynamics discussed in Sec. Il .

originates in our model from the perturbatié®.16), which W2(t) = 4kgT e °°dXS|n2(X) (5.17
corresponds to the exact analytical form of the elastic force 5m(2p) %5 €2/5 0 X115 :
Fo=—€d?y/ds®> and not to its linearized approximation

Fe~—ed*h/dx?, deducible from,,. This allows us 10 yhere we sek=wy(k)t. The integral evaluates {&4]
study and simulate the dynamics of membranes in the non-

linear regime. .
. - = sirf(x) 5225
In order to analyze the nonequilibrium roughening of the f dx — cog2m/5) T'(4/5)=1.7219. ..
interface, two immiscible fluids at the same temperaflire 0 x5 6
are brought in contact at time=0. The interface between (5.18

them is initially flat. Due to the thermal fluctuations in the
bulk, standing bending waves will be excited on the interfaceand the roughening of the interface thus scales according to
with frequencies given by the dispersion relation

2%55 cog2m/5) I'(4/5) kgT
2 — 6/5
(k)= € o2 (5.1 WA(t) = o o i 1 (5.19
0 2p ’ P €

where for simplicity we consider the inviscid limiv0) of W€ expect Eq(5.19 to describe the growth of the interface
Eq. (4.4). In analogy with the argument ¢51,57 and by until the crossover time at which equilibrium is attained. The

means of the fluctuation-dissipation theorem, one anticipate&©SSOVver time. may be approximated by the time neces-

that the power spectrum is given by sary for the longest-wavelength excitation to reach its maxi-
mum amplitude, that ist.=7/4. If the dispersion relation
2ksT (4.4) is used to estimate the peridd we conclude that
(I(D)]?)=——7 sir[wo(K)t], (5.12
ELk 5
T 1 [pL
. . . te=—=35\/ (5.20
so that the mean square width of the interface is expected to 2w 8 NV g3
grow as
. oo We shall compare the lattice-Boltzmann numerical simula-
WA(L t):4kBT D L sir? | € [2mn tions with the theoretical results of this section in the follow-
’ eL 4 \2mwn 2 L ' ing.

(5.13

where the thermal average \6f is understood. The inviscid
form of W2(L,t) as given by Eq(5.13 does not hold for
long times, since it does not relax to the equilibrid@il0) as In this section we present the results of the simulations
it should if the effects of a finite viscosity were taken into performed using the lattice-Boltzmann method with a nine-
account. Nonetheless, the initial excitations are all in phaseyelocity square latticéthat is, a FCHC lattice projected in

VI. THERMAL FLUCTUATIONS OF ELASTIC
INTERFACES: SIMULATIONS
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two-dimensions [37,41]. The computational box of size A. Steady state

X L is filled with two immiscible fluids prethermalized to a

common temperature and separated by a thin interface. The The evolution of an interface of size=64 was moni-
two fluids have the same densities and viscosities. We studigred for Z° time steps, setting the experimental parameters
the dynamical effects of thermal fluctuations at equilibriumto Ag=—1.5, p=0.5, E=0.0002 and the variancé

and out of equilibrium, when the interface grows up to the=10"*. The resulting log-log plot of the frequency power
steady state given by E¢5.10. The interfaces we consider spectrum is given in Fig. 5.

are driven by the coupling with the surrounding fluids and by  In order to compare the simulation data with the theory,
purely elastic forces, tuned by the bending modubusas ~ We rewrite Eq.(5.2) in an explicit form. Leté=w/vk?, wq

defined in Sec. Il. =k?\/ekl2p, &y=wqy/vk?. Then Eq.(5.2 can be recast as
|
" 2pkvkgTO
h(w)]?=————— N , 6.1
[hi(w)] 2L (ekh)? &(8) (6.2)
where

1 ENN1+e2-1

N (6)=—12 . (6.2

22 14 g1\ Va1 Visge+1

This function of¢ is expanded arouné=0, leading to wave numbers, according to the expressigh ek/2p1?,
showing thaté, is an increasing function d€ This behavior
5 . is opposite to that observed for interfaces driven by surface
£+0(8Y), (6.3 tension, wheré,= \o/2p 2k andé, is thus decreasing with
k [51,52.

(3)The high-frequency region, expected from E8.2) to
represent @~ "> decay Ny ~ &3¢~ "'%/24/2), independent of
either the bending rigidity or the surface tension of the inter-
face, according to

_ 4 3 1
N, (6)=1— & 2 16

which can be used to show thago(g) is strictly decreasing

for éo=&oe, With éc=212(\ 10— 3)~1.1394. Whené,

>&oe, @ maximum appears &t,, with Iim§0H§Oc§m=O and
|im§0_>oo§m=§0. Also, we infer from Egs.(6.2) and (6.3

that, whenéy<1, Ngo(g) can be approximated by a distinct o , J2v K2 keT .,
power law, according to the value éf[the O(&*) terms do lim [h ()] /®=Ww (6.5
not add any contribution That is, N ~1 when ¢<&5, o m=p

~ghe2 2 LEZ ~ fAem T2
Ney™Eoé ./4 when§0<§<1,.§ndN§0. €06~ "12\2 when The relative amplitude of this segment of the power spec-
£>1. In this case, two transition regions can be further deyrym is thus determined by viscosity effects alone.
tected around~ &3 and é~1.

In our simulations¢,>0.638 (§§> 0.407). Therefore we

distinguish three regions in the frequency power spectrum. -2
(1) A plateau corresponding to the low-frequency limit of ~ 4
Eq. (5.2 (Ng,~1), 2
3 -6
R 20kv  kgT £ _g
lim | A()|? / =" 0 (6.4 I -.
.'.
- "
which explicitly shows a dependence on the bending stiff- 12 '

nesse [55]. Low-frequency excitations are thus controlled by - 3 B% a0
elastic forces and viscous effects. In Fig. 5 this region spans 10
a frequency interval of about two orders of magnitude forthe g 5. Frequency power spectrum for a fluctuating interface of
highest wave number, up to wheieapproaches the pole of gjze| =64, whose time evolution was monitored fdZime steps.
the response functioh. Experimental data for wave numbéss 24r/L,47/L and 67/L are
(2) A transition region. Notice that the maximum appearsreported as filled circles, squares, and diamonds, respectively. The
in this region only whergy> &,.~1.1394, which is not the solid lines represent the theoretical predictions from E5j2),
case here. The maximum would, however, appear at highahowing that the agreement spans about three orders of magnitude.
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1 ¢ WL=1/15
e WL=1/30
W/L = 1/60
0
o —_
£ 5
E g
g -2 g
- o
-3
-4
-7
-1 -08 -06 -04 -02 0 -4 36 -32 -28 -24
logok 2log, ,(W/L)=log, ,(k; TL/e)
FIG. 6. Power spectra of fluctuating membranes of &ize60 FIG. 7. Effective surface tension obtained from the power spec-

lattice units and different bending stiffnesses. The interface widthtra of the simulations of fluctuating membranes. Computational
length ratioW/L ranges from 1/60 to 1/15. WheW/L>1/20 the  boxes withL=40 and 60 and different temperatures and bending
purely elastic functional dependence of the power speciith rigidities were considered. We show a log-log plot of the data for
slope of—4 in a log-log ploj is recovered. Ot VErsuskgTL/e=W?/L2,

The experimental results reproduced in Fig. 5 agree withhf the measured values afg; versus W/L)2. Approxi-
the theoretical prediCtionS, here drawn as solid lines, over ﬂ’]ate|y' O eif decays as a power law for increasing values of
range of about three orders of magnitude, including part ofy/L, namely, D(TL/€)x(TL/€)~2; also, whenw/L > 1/20
the high-frequency region. The discrepancy with the theoryt essentially vanishes and purely elastic dynamics takes
at the highest frequencies is of unknown origin. It may bepjace.
related to the low signal-to-noise ratio at the highest frequen- |n order to discuss the origin of E¢6.7), we investigate

cies, or possibly some other artifact of the discrete Fourier1ere the scaling properties of the rajiby, the crucial factor
transform. in the perturbation(3.16 of the Boltzmann equation. For a

Sinc;e the theoretical predictic(ﬁ.Z) is confirmeq by our boundary of the fornin(x), the derivative with respect to the
numerical results at all but the highest frequencies, the su rclengths can be expressed in terms s

sequent conclusions, Eqg&.8) and (5.10), describe the av-

erage wave number power spectrum and the functional de-

; : ) . . d 1 d
pendence of the interface width on the linear dimension of =, (6.9
the box. In particular, from Eq(5.10 we estimate that ds  J1+h'(x)? dX

W/L~1/16 for the case just discussed. ) .
where the prime stands fd/dx. From the expression for the

B. Effective surface tension curvature,
More simulations were performed to verify the agreement h”(x)
with the theoretically predictable wave number power spec- y(x)= W (6.9
trum. Different temperatures, lattice sizes, and bending ri- ( )
gidities were prescribed for the system. In Fig. 6 we report & optains
study of equilibrium power spectra for a lattice of sikze
=60 and bending modulus ranging from 0.0032 to 0.512. v h(4) h'h" (1—5h'2)h"2
With this set of parameters the ra/L spans an interval AP —-10 -3 )
from 1/6 to 1/60. We notice a very good agreement with Eq. Y h"(1+h'?) (1+h'?)2 (1+h'?)3
(5.8 when W/L>1/20, but for smaller ratios the relation (6.10
describing the steady state power spectrum is approximated
by In the case of sinusoidal bending waves and fluctuating in-
terfaces with horizontal periodicity as a boundary condition,
kgT the profileh(x) satisfieqd 56
(hd?y=——— (6.6 profient 550
(oegk=+ ek™)L W
(N (x)=—
showing the presence of an effective surface tensign By h00= Ln Sn(2mx/L), 6.1

considering the smalt- limit of Eqg. (6.6) when W/L
<1/20, we measured for different points in the three- whereh(™(x) is thenth derivative ofh(x) andsS, is periodic
dimensionale-L-T space. The following empirical scaling in x with periodL. By replacing Eq(6.11) in Eq. (6.10, we

law resulted from our simulations: find the following scaling relation for the dynamical factor:
1 .1 y 1 )
aeﬁzpD[(W/L) ]ZFD(TL/e), (6.7 ;:Egth[(W/L) XIL], (6.12

whereD is a scaling function. Figure 7 shows a log-log plot whereg,, is the theoretical scaling function.
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1936 32 48 64 0 64 1 )2(8 192 256 .
(@) X (b) '
1 2 3 4
2107 x10™ log, ot
-3.2
5 . » F A FIG. 9. Log-log plot of the time evolutioftircles of the mean
'Y" / * ,Yn / - \‘\/ ‘\ width of an interface with sizé =64, starting from flatness at time
YB Y t=0, and monitored for an interval of time equal to about twice the
-5.6) crossover timg5.20. The solid line represents the theoretical scal-
-10 -6.4 ing law We:t12 predicted for the effective surface tensiog;. The
0 16 32 48 84 0 64 128 192 256 sudden change in slope aroutrd 10° corresponds to the onset of
X X purely elastic dynamics.
{c) (d)
-3 C. Nonequilibrium roughening
As shown in Sec. V B, at large times the average interface
width reaches its equilibrium value given by E§.10. Be-
fore reaching the stationary state, though, the interface
growth is described by the power lai®.19. In this section
we present the results of the simulation of nonequilibrium
67 728 192 256 growing interfaces and compare them with the theoretical

X predictions.

After initializing the system as a flat boundary separating
two immiscible prethermalized fluids, we monitored the
growth of the interface for a period of time approximately
circles for static sinusoidal interfaces with wavelengthsf 64 and ~ €dual to twice the crossover tintg estimated in Eq(5.20.

256 lattice units and widthsV ranging from 1/64 to 1/8 of the We repeated the simulation 100 times and averaged the re-
wavelengths. Solid lines represent the analytical results for the corfults, in order to obtain the mean quantities that appear in
tinuum limit obtained from Eq(6.10. WhenW/L<1/32, the mea- EQs.(5.10 and(5.19. Such an experiment is reported in Fig.
sured values appear to be shifted with respect to the theoretic&l, where the solid line represents the expected behavior of
ones. This introduces an effective surface tension for almost flathe interface growth, taking into account the presence of the
surfaces that scales as a functich of W and L: o  effective surface tension. From the figure, the early-time evo-
=D[(W/L)?)/L>. lution of the interface growth appears to be described by the
scaling lawWect¥3 [52]. Again, we conclude that the mem-

After initializing the system with different sinusoidal brane is indeed driven by for very small interface width/
waves, we measured the rajoy for L=64 and 256 lattice length ratios, that is, for almost flat boundaries. In order to
units and amplitudes ranging from 1/64 to 1/8 of the wavebypass the effect of the surface tension and analyze the
lengths. In Fig. 8 we report the results of such measuremenggurely elastic nonequilibrium dynamics, the membrane pro-
as a function ok. From the figure the experimental behavior file is initialized in such a way that/L>1/20. Under these
of /v presents the scaling condltlo_ns, the disturbance qlue . IS negligible (_as

shown in Sec. VI A. The Fourier components of the inter-
face profile are prescribed as

hi(t —\/ZKBT i wo(K)t
k(to) = L sin wo(K)to],

wherety=t./4 is the time at which the numerical simulation
starts; furthermore, the relative intensities lof(ty) have
been chosen so that they agree with the evoluftoh?. We
studied the nonequilibrium roughening of such interfaces for
an interval of time starting dt/4 and terminating at approxi-
The most notable feature in E(.13) is the presence of the mately 3., after the equilibrium width is attained. In Fig.
additional constant terr®[ (W/L)?]/L2. Itis responsible for 10(a) we report the interface widths for system sizes
the introduction in our model of an effective surface tension,=32, 48, 64, and 96, rescaled WL >? so as to match the
as it causes in Eq. (3.16 to be a nonvanishing number.  prefactor VkgT/720e from the anticipated steady state

FIG. 8. Measured values of the ratigy are plotted as filled

y 1 5 2
2 =Tl WIL? XL+ DLWIL)Y, (613

where G., approachesj;, for large computational boxes
(high resolution:

lim Ge ol (W/L)2,X/L]=Ge[ (W/L)2,x/L].

L—oo

(6.19
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x 10~ decays exponentially in the long-time limit, in agreement
with the behavior of the correlated forces on the interface,
due to the excitations in the bu[k2].

8 Although the theoretical discussion was necessary for the
sake of clarity, this work instead focused on the development
of a numerical method simulating the phenomenology of
6 fluctuating membranes. We created a lattice-Boltzmann
method. Starting from the description of the membrane dy-

wiL%2

3 @) namics by means of the Landau-Helfrich free endrgg4],
4 in which the interface geometry appears explicitly in the
0.1 02 timoe}?_5’2 04 05 form of the curvaturey and its derivatives, we translated the

macroscopic equation of motion governing the interface evo-
lution into a perturbation of the single-relaxation-time
lattice-Boltzmann equation. Such a perturbation depends on
v, S0 that a crucial point of our model is the localization of
the interface and the measurement of its geometric proper-
ties. As outlined in Appendix B, we adopted an explicit char-
acterization of the boundary followed by a polynomial map-
ping, from which we extracted the information about the
local curvature.
£ We tested our method to reproduce the hydrodynamic
_2_4|’ equilibrium of circular bubbles and the dynamical coupling
-14-12 -1 -08-06 -04 of the interface with the surrounding fluids in the bending
log10(tL572) wave dispersion relation. Thermal fluctuations were intro-
FIG. 10. In(a) we plot the rescaled interface widih/L>? in duped in the model by adding a random component to the
lattice units, as a function of the time, scaled o> so as to make fluid stress tensofr49]. The lattice-Boltzmann equation was

all the crossover times match the prefact@/64 7 e predicted thus generalized to include a stochastic tﬁ[ﬁﬁ]’ whose
from Eq. (5.20. The computational box sizes are- 32,48,64, and fI_uctuatlons are uncorrelated in space and Flme. Th(nT e_qumb—
96. The horizontal line represents the steady state width as in E¢IUM frequency power spectrum of fluctuating elastic inter-
(5.10. In (b) a log-log plot of the same data is given. The dashedfaces, predicted by the theory and related to the correlation
line marks the scaled crossover time, while the oblique line reprefunction of the excitations, was confirmed in our numerical
sents the theoretical prediction from EG.19, with an angular ~ Simulations. Also, we simulated the nonequilibrium roughen-
coefficient of 3/5. The symbols represent different values of théng of membranes, monitoring the time evolution of the in-
system size: squares, diamonds, filled circles, and six-pointed statgrface width. Its growth rate was in agreement with the the-
correspond td.=32,48,64, and 96 respectively. oretical predictions mentioned above, although we noticed a
disturbance due to numerical errors at almost flat surfaces,
(5.10, drawn in the figure as a solid line. The horizontal generating an unwanted effective surface tension. In order to
coordinate in Fig. 1@) represents the timein lattice units, improve the effectiveness of the interface detection process,
rescaled as/L%? so that all the crossover times fall at other, more accurate, techniques for tracking the interface
Jpl64 73 €, according to Eq(5.20. In order to evaluate the could be considered. For example, using markers in the con-
prefactors above, we used the relatiqBsl5), (3.17), and text of an explicit discretization of the interfad®7,58
(4.5), where the parameters for this experiment were set teould further improve the performance of this numerical
Ag=—1.5, E=0.0002,p=0.5 and the variancé to 10" 4.  method.
A log-log plot of the same data is shown in Fig.(h0 Also, One of the advantages of our numerical method relies on
the predicted scaling lab.19 is represented as a solid line the fact thaty and d?y/ds? the second derivative in the
with angular coefficient 3/5. We notice a good agreemen@rclengths, are not approximated by their linearized expres-
between the numerical results and the theoretical predictionsjons d?h/dx* and d*h/dx* respectively[here h(x) is the
although we were able to investigate the nonequilibrium beboundary profilé We could thus use our model to study and
havior in a time range of just about one-half the order ofsimulate systems in the nonlinear regime, that is, when the
magnitude. interface is far from being flat and the curvature is a nonlin-
ear function of the interface profile. Another feature of this
VII. CONCLUSIONS method is that it has been designed from the outset to de-
scribe thin interfaces separating twar more fluids, a situ-
Fluctuating elastic interfaces in fluids have been discussedtion that is difficult to describe in terms of a slowly varying
from different approaches. By means of the fluctuation-continuous fieldorder parameterIn future work, we would
dissipation theorem, we presented a theoretical derivation dfke to employ this model in the study of fluctuating mem-
nonequilibrium interface roughening, described by the scalbranes separated into many distinct components, colliding
ing law W2=L3g(t/L>?). This expression predicts that the with each other and immersed in fluids with prescribed or
interface, initially flat, grows a®et%5 and at long times it complex fields. Also interesting would be the inclusion of a
reaches the equilibrium widthW= \kgT/720€ L2 Also, surfactant species, as in the microemulsion model of Ref.
we showed that the correlation function of the fluctuationg44].

log1o(W/L3/2)
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sequent analysis. Upon integration by parts, the boundary terms vanish as we

study closed surfaces or impose periodic boundary condi-
APPENDIX A: FLUID-INTERFACE COUPLING tions and all of the derivatives involved are supposed to be
In the following we review the dynamical coupling be- Smooth functions of the coordinates Therefore, by apply-
tween the membrane and the surrounding fluid, generalizin§!d Hamilton’s principle, including a term for an external
the results tan-dimensional interfaces. The 2D case with a "€ Fext,
saddle-splay term in the free ener(®.1) is also presented.

We shall denote byr=(Xq, ... X,:+1) the locus of the ﬂ:j f [—pr— E(V5)2r+gvﬁr].5rd3dt
n-dimensional hypersurface embedded in the

(n+1)-dimensional space. The hypersurface is parametrized

by then coordinatesi,, . . . ,u,, collectively referred to as, +f Fext ordt=0, (A7)

so thatr=r(u). n(u) represents the unit normal to the sur-

face oriented outward ang=dr/du; is the tangent vector one retrieves the following equation of motion:
corresponding to the coordinatge. We shall assumes that

the hypersurface is well behaved and we are able to choose a Fexi=— oVﬁrJr e(Vﬁ)2r+p'r'. (A8)

parametrizatioru such that _ o
If Feyis the pressure, it is directed along the normal to the

(e.6)=6-6=7;. (Al)  surface, that isF.,=Fn. By noticing that Eqs(A4) and

. ! , (A2) lead to
The Weingarten operator, definedla@g)=dn/du;, is self-

adjoint with respect to E{A1), and theg’s are chosentobe  (V2)2r=(V2)(—Hn)
eigenvectors ot

an :_(VﬁH_HZ ¥
L(Q)Ea—ui:%eu (A2) '

2y g 2
Yi &Ui &ui &

(A9)

n+ >,

where vy, is the principal curvature correspondingéa In . )

other words, our parametrizatianruns along the principal @nd by projecting along the normal and tangential compo-
directions of curvature. We shall apply Hamilton’s principle Nents, Eq(A8) can be separated as

[59] to the line integral of the Lagrangian describing the

interface dynamics, F—pr-n=cH—eV2H+eHY, 72, (A10)
I

- P €12 .
Ild ff(zr 2H U')det (AS) pr'QIEZZ’}/i&H/&Ui+H (9’}/i/(9Ui, i:].,...n

All
wherep is the density of the hypersurface,s the bending (B0
rigidity, H=3,v; is the mean curvature angdis the surface where we have dropped the subscriph the Laplacian as it
tension. dS=du;, .. .du, is the volume element for the is invariant for any isometric reparametrization. The main
given parametrization. By means of E¢8.1) and(A2) one  result of this Appendix is that the dynamical coupling be-

can verify that tween the interface and the fluid in the lattice-Boltzmann
method is provided by Eq(A10). Since the macroscopic
Pr e motion of the membrane is extremely slow in terms of lattice
R ou M (A4)  units, of O(10°) time steps, the second term in the left-hand
' ' side of EQ.(A10) can be neglected for our purposes and we
so that Eq(A3) is recast as shall regard
. € _ 2
Zid:J f ng_E(Vﬁr)2_a.H |(7uir| dSdt (A5) F—O’H_EVZH-FEHEi Vi (A12)
|
where as a quasistationary equilibrium between the interface con-
figuration and the surrounding fluid pressure. Similarly it can
o odr pr be shown that the dynamical coupling for a 2D interface,
rza, Vﬁr: — |a,r|=1. including as in Eq.(2.1) a saddle-splay correction to Eq.
T U i

U (A3), is given by
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F=0H—eV?H+ eH(H?—2K)

+ e(HK — 8%y, 19uz— 2y, 10u?), (A13)

whereK = v, v, is the Gaussian curvature. Equatiohl3)
should be used in simulating 2D membranes with this lattice-
Boltzmann method, when changes in the interface genus are
taken into account. X

FIG. 11. Filled circles represent an interface neighborhood of a
given lattice sitexy on the boundarymarked by a crogsAn arrow

In this appendix we include a description of the algorithmindicates the direction of the normalto the interface at the corre-
used in this work to measure the geometric properties of théPonding lattice site. The whole set of points(@is rotated clock-
interface. The procedure is schematically divided into threevise by the angley=arccos(i-x) so as to aligm with the y-axis
Steps: localization of the interface, po'ynomia' approxima_(b). A least-squares fit of the |nterface can thus be realized by the
tion, and evaluation of the local curvature. single-valued polynomiay:E?zoaix'/i!, here drawn as a dashed

As mentioned in Sec. Ill, the populations correspondingine:

to two immiscible fluids are distinguished from each other byleast-squares fit, as described below. The neighborhood of a
splitting the occupation numbers(x,t) at a given lattice  giyen boundary poinin the present case,) is constituted
site into a “red” partri(x,t) and a “blue” partbi(x,t) of  py contiguous lattice sites i8 and is chosen so that the
the distribution function, as in Eq3.8). By defining the  following two conditions are met(l) The normals at the
color field as points furthest fromx, make an angle of at most/4 with
the normal atxy; (2) All the boundary points in the neigh-
¢(X,t)zz [r.(x,t)—b;(x,1)], (81)  borhood lie within a distance of 30 lattice units froxg
i (about 10 times the interface widtbr half the linear size of

) ) ) i _the computational box, whichever is smaller.
one can visualize the binary fluid as a 2D surface where its |, Fig. 11 we present the two-step process. The filled

lowest regions correspond to the physical presence of thgircles represent the lattice sites belonging to the boundary in
blue fluid qnd the 'flat hlghlgnds to' the areas occupied by 5 neighborhood of the point, (marked by a crogsarrows
the red fluid. The interface, in _thls picture, is represented by, o magnified representations of the normals at the corre-
the steep slopes. One can define the bounfagtween the  ghonding lattice sites. As shown in Fig. (b}, calculations

two flu_ids as the set of Iattice_ sites whose color _field ab_solut%re simplified by rotating the whole set of points clockwise
value is smaller than a fractiom (<1) of the fluid density by the angled=arccosf-i), wherei is a unit vector di-
p, thatis, rected along the positive-axis. In this way, we can fit the
— Iy subset of B by a single-valued polynomial inx: vy
B={x:|®P(x,1)|< . B2 . .
bt <ap} B2) =3N ,ax//i!, wherex=0 corresponds to the horizontal co-
In our simulations, due to the small thickness of the inter-ordinate ofx,. It is convenient to choos&l=4, because
face, a might be chosen to be a value between 0.5 and 0.9erivatives up to the fourth order are involved in the evalu-
with no substantial changes B Another parameter used in ation of y, the second derivative in the arclength of the cur-
the description of the interface is the color gradigrdefined  vature. In practice, we leN=5, as the accuracy of our
as method does not improve for larger valueshof
Once the coefficients; are estimated, we calculageand
f(x,t)zz ciE, [ri(x+c,t)—bj(x+¢,t)]. (B3 ¥ly by replacingh(x) in Egs. (6.9 and (6.10 with y
i i =X>a;x'/i! and settingx to vanish. In other wordsg,, sub-

) n o ;
From its definitionf appears to be, in the lattice approxima- stitutes forh® |n. Egs. ((.5.'9) f"md @'10)‘ ,AISO’ It |s.eV|dent
tion, perpendicular to the interface. The vectsef/|f| wil from these equations thad v is an ill-defined .f.unct|on when
be used here as the unit normal to the interface. y=0 or, equivalentlyh”=0. We set the terry/y to vanish

After localizing the interface, in order to measure its geo-in such cases. The dynamical terA(x,t) — y(x,t)/ y(xt),
metrical properties at a certain lattice sktgin B, we replace appearing in the perturbatid.16) is thus evaluated by re-
a neighborhood ok, with the polynomial resulting from a peating the above procedure for each lattice site 5.
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